
s

TM-71-!025-1

TECHNICAL

MEMORANDUM

TUe" AIITf_AA ATr'F_ TACk"

SCHEDULER SYSTEMS MANUAL

mRI
Bellcomm

,,_" -r_p\

_AJ

BELLCOMM, INC.
955 L'_IFANTPLAZANORTH,S.W. WASHINGTON,D.C 20024

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE- The Automated Task Scheduler Systems
Manual

TN- 71-i025-i

DATE- February 12, 1971

FILING CASE NO(S)- 610 AUTHOR(S'_)- A. B. Baker

FILING SUBJECT(S)- Flight Planning, Mission Timelining,

(ASSIGNED BY AUTHOR(S)- Resource Allocation, Scheduling

ABSTRACT

This report presents the system level documentation

on the Automated Task Scheduler (ATS) System, a set of computer

programs designed to produce and display timelines of in-flight

activities for manned space missions. The programs are intended

to be used for investigations into the process of flight

scheduling.

The system consists of three programs: a Schedule

Generator, a Data Processor, and a Data Bank Generator. The

Schedule Generator (46,200 words) is the major program in the

system. It uses a "window-filling" technique to generate time

histories of allocations for each of several designated resources

(e.g., crewmen, electrical power, pieces of equipment, etc.).

The program may be used to generate a completely new schedule

or to complete a partial schedule generated by a previous run.

The latter feature can be used to investigate the effects of

variations in a basically desirable schedule. The Data Processor

(35,100 words) is used to produce graphical displays of the

timeline data produced by the Schedule Generator while the Data

Bank Generator (22,800 words) is used to create and maintain a

Task Data Bank, a data library containing descriptions of all

tasks that may be considered for scheduling on a given mission.

The system has been implemented on Bellcomm's UNIVAC-.

1108 compu£er. The programs are written primarily in FORTRAN V,

SAC-I (a FORTRAN-imbedded list-processing language), and 1108

Assembly Language. List-processing and dynamic array storage

were used to increase the efficiency of computer storage utili-

zation.

BELLCOMM, INC.

TABLE OF CONTENTS

1.0

2.0

3.0

4.0

5.0

8.0

9.0

10.0

ll.0

A.0

Introduction

The ATS Scheduling Algorithm

2.1 Selection of a Candidate Task

2.2 Identification of Scheduling Opportunities
for a Candidate Task

2.3 Selection of Task Start-Times

ATS System Description

3.1 The Data Bank Generator

3.2 The Schedule Generator

3.3 The Data Processor

The ATS Task Description Language

4.1 Language Structure
4.2 Card Formats

4.3 Generating a New Task Description

4.4 Modifying a Task Description

4.5 The Description Card Data Deck

The ATS Internal Data Structure

5.1 DYnamic Array Storage

5.2 Linked-List Storage

5.3 Auxiliary Storage

Functional Description of the Data Bank Generator

Functional Description of the Schedule Generator

7.1 Executive Control

7.2 Initialization

7.3 The Window-Finder

7.4 The Scheduler Area

Functional Description of the Data Processor

8.1 Generation of Plots Using the SC-4020

and AUPLOT Systems

8.2 Data Processor Executive Control and

Initialization

8.3 Horizontal Plot Generation Area

8.4 Vertical Plot Generation Area

The ATS Job Decks

9.1 Job Deck for the Data Bank Generator

9.2 Job Deck for the ATS Schedule Generator

9.3 Job Deck for the ATS Data Processor

Recommendations for Future Work

Summary

References

Appendix - ATS Error Diagnostics

BELLCOMM. INC.

955 L'ENFANTPLAZANORTH,S.W. WASHINGTON,D.C. 20024

SUBJECT: The Automated Task Scheduler

Systems Manual - Case 610

DATE:

FROM:

February 12, 1971

A• B• Baker

TM-71-I025-I

TECHNICAL MEMORANDUM

1.0 Introduction

The Automated Task Scheduler (ATS) System is a

group of computer programs designed to produce and display

mission timelines (schedules) for manned space missions at

the level of detail normally found in a flight plan. The

system is intended to be used primarily for investigations

of the flight scheduling process.

The incentive to develop the ATS stems from the

increase in the duration of future manned space missions

compared to those in previous missions• Flight scheduling

for the relatively short duration missions in the Mercury,

Gemini," and Apollo Programs was performed manually. However,
missions in the Skylab Program are to last for one to two

months and missions of even longer duration are planned for

the post-Skylab period. The increased duration of these

missions will significantly increase the complexity of sched-

uling. This increase provides the motivation for attempting

to automate as much of the scheduling process as possible in

order to: (i) reduce the burden of tedious manual scheduling,

and (2) decrease the time required to construct detailed time-
lines.

At the beginning of the present effort, a review of

the state-of-the-art found that a number of automated sched-

ulers had already been built (Reference i). The review pro-

vided several concepts that have been used in the development
of the ATS. These include:

. That the model be organized into three

distinct functional areas -- Input and

Data Preparation, Scheduler, and Processor.

• That the model be sufficiently modular

so that each function and major sub-

function is as isolated as possible from
the rest of the model. This structure

facilitates evaluation of different com-

putational techniques in each area.

BELLCOMM, INC. 1-2

1

•

•

That data libraries or "data banks" be

established which would contain the large

amounts of input data required by a

scheduler• The banks, stored on magnetic

tape or FASTRAND file, would simplify the

input card decks for each computer run.

That spacecraft ephemeris data be

generated independently of the scheduler•

That provision be made for analysis of

timelines generated by the scheduler•

BELLCOMM. INC.

2.0 The ATS Scheduling Algorithm

The primary objective of an automated scheduler

is to assemble a given set of tasks into a self-consistent

timeline within the structure defined by mission constraints,

subsystem capabilities, and inter-task constraints. In the

ATS a task is described, in part, by a set of resource*

allocation requests. Each request or requirement specifies

that a particular resource be allocated to the task during

each performance of the task. Therefore, the ATS does not

generate a single mission timeline but rather a set of time-

lines, each timeline describing the time history of the
allocations of one resource over the duration of the mission.

The timelines are produced by repeated cyclings

through a basic three-step sequence:

Step i: Select a task from those tasks not

yet considered.

Step 2: Identify opportunities where the
candidate task can be scheduled.

Step 3: Select one or more opportunities

and commit the task to those places

in the appropriate resource time-
lines.

After the candidate task is selected, the entire mission

duration is searched for acceptable scheduling opportunities.

Task performances may then be scheduled at any of these

opportunities. The method of scheduling tasks at acceptable

opportunities anywhere over the mission duration is known as

the "window-filling" scheduling technique. It is illustrated

in Figure 2.1.

Note that the sequence is repeated once for each

task. At that time a decision is made whether or not to

schedule the candidate task and if so, which of the scheduling

opportunities to utilize. Once made, the decisions are

irrevocable for the remainder of the scheduling process (.one

computer 'run').

*Examples of resources include a crewman, a piece of

equipment, electrical power, etc.

2-2

PRECEDING PAGE BLANK NOT FibMbo

D
D
E

MS

a

Z

ILl

Z
.J

MS

F-

"I"

Z

>-

c,o

O

Z

MS

Z

.-I

c_

Z

..I

..J

8
Z

MS

-t-
I,-

I

MS

BELLCOMM, INC. 2-3

2.1 Selection of a Candidate Task

A task's position in the sequence of candidate
selection will have a marked effect on the number of

scheduling opportunities available for that task. Hence,

some method should be available to select the candidate

tasks in the most advantageous order, i.e., in a sequence

that maximizes the number of tasks that are scheduled.

One particularly useful method of ranking

consists of assigning a number to each task. Tasks are

then ranked according to the relative magnitudes of these

assigned numbers (or priorities) and considered for

scheduling in the resulting order. There are two basic

types of priorities: static and dynamic. Static

priorities are assigned to each task by the user before

the scheduling process begins. The numerical values

represent the user's estimate of the relative difficulty

of scheduling and remain constant throughout the scheduling

process.

As noted above, the number of scheduling

opportunities available for any task depends upon the

commitments already made at the time the task is being

considered. As the scheduling process continues, and

more commitments are made, the number of scheduling

opportunities for each task will decrease, and hence the

difficulty with which the tasks can be scheduled will

increase. Rather than remain constant, the priorities

for the remaining tasks might be revised each time a task

is scheduled to reflect changes in scheduling difficulty.

Candidate tasks would then be selected for scheduling in

descending order of the latest assigned priorities.

Priorities that are revised during the scheduling process

are called "dynamic" priorities.

An optimum ranking system would combine the

features of the static and dynamic systems. The difficulty

in implementing such a system stems from the inability to

define meaningful criteria that can be used to calculate

dynamic priorities. Though many criteria have been suggested

(Reference i), all tend to be arbitrary and highly dependent

BELLCOMM, INC. 2-4

upon the user's objectives and opinions. Therefore, the

current version of the ATS uses static priorities to rank
the tasks for candidate selection.*

2.2 Identification of Scheduling Opportunities
For a Candidate Task

As noted above, a single performance of a task

may be described, in part, by a set of resource require-
ments (allocation requests) which must be met in order to

schedule the task. Figure 2.2 illustrates a general set

of resource requirements for a task. In the figure,

Requirement A might specify the services of a crewman,

B a second crewman, C a level of electrical power, etc.

As many requirements as needed may be specified.

Each resource requirement exists for a definite

interval of time. The length of the interval defines how

long the resource is to be allocated to the task while the

relative position of the interval defines when, during the

task performance, the resource is required. The relative

position of the intervals must, therefore, remain fixed.

To describe these relations, an arbitrary reference point

is selected and designated as the "start-time" of the task.

The endpoints of each requirement interval are then

assigned values indicating their positions relative to
that start-time and hence relative to each of the other

intervals. The endpoints may have any desired position

relative to the reference point. (Endpoints specified

prior to or subsequent to the start-time are equally
acceptable.)

Note that the start-time of the task serves as

a bridge between the relational time scale shown in the

Task Requirement Time Diagram and the actual mission

elapsed time scale (MET), for when the start-time of the

task is defined in MET, then all of the resource alloca-

tions will also be defined in MET.

In addition to these resource requirements, each

task has an associated set of performance constraints which

must also be met in order to schedule the task. There are

two types of constraints: those that define the performance

objectives (e.g., minimum number of performances, time

*The highest priority task has a priority of i, the

_,,_A I_±9_*_ t a priority o_ z, etc. Tasks with the same

priority are selected in the order in which they were

input to the program.

2-5

REQUIREMENT A

REQUIREMENT B

REQUIREMENT C

REQUIREMENT D

REQUIREMENT E

I I

START-TIME

RELATIVE TIME

FIGURE 2.2 - TASK REQUIREMENT TIME DIAGRAM.

BELLCOMM, INC. 2-6

between performances, etc.) and those which place

restrictions on the time of performance (e.g., performance

on specific days, or with respect to the performance of

another task). Since the ATS uses mission time as the

basic independent variable, all resource requirements and

performance restrictions are translated into restrictions

on the time of performance.

An acceptable interval for the performance of

a task can now be defined as an interval of MET during
which all resource requirements as well as all performance

restrictions can be satisfied. As a corollary, an acceptable

start-time for a task is defined as a single value of MET

where the task start-time (Figure 2.2) can be placed with

the certainty that all of the task's resource requirements

and performance restrictions can be satisfied.

The ATS scheduling algorithm finds acceptable
start-time windows, i.e., continuous intervals of MET from

which a task start-time may be selected for each task.

These windows are determined by 'overlaying' the start-time

windows determined by considering individual resource

requirements and performance restrictions separately.

The process is illustrated in Figure 2.3. When only the

first requirement, Requirement A, is considered, the task

may be initiated at any time within one of the three start-

time windows: A 1 - A I, A 2 - A 2, A 3 - A 3. A range of

acceptable start-times for the task based on consideration

of Requirement B is then determined for the window A 1 - A I.

In the case shown, the start-time window based only on

Requirement B exceeds the limits established by the boundary

points A 1 - A I. Therefore, the boundary points A 1 - A 1 now

represent a permissible start-time window based upon consid-

eration of both Requirements A and B. The boundary points
!

of this window are relabeled B 1 - B I. When Performance

Restriction C is considered over the range B 1 - BI, two

separate start-time windows emerge, C 1 - C 1 and C 2 - C 2.

The process is repeated again by considering Performance
!

Restriction D over the range of the window C 1 - C I. When

no acceptable start-time windows are found, the window

C 2 - C 2 is considered. When the last requirement, Require-

ment E, is considered over the range D 1 - DI, the window

2-7

Z
0

.. ;<
0

Z
UJ

<

<

<_

m

b
.... •.tin,- -- --

@

I.IJ

I.U

Z
0

U)

<
I.-
<

n-
O
14..

Z

ILl

rr
<

n-

14=

UJ

2:
I-
14.

0

z
0

<
z

Lu
k-
uJ

I

14.1

rr

1.1.

Z < _ w

0 _z _zz z z

• <--

<w 5 _ O_ O_

O-- _ W W _ _ W W

BELLCOMM, INC. 2-8

E 1 - E 1 is obtained which represents the first acceptable

start-time window for the task. If the task is to be

performed only once during the mission, the search for

start-time windows is terminated when a window is found.

If the task is to be performed more than once, the search

is continued until all possible windows have been calcu-

lated.

2.3 Selection of Task Start-Times

After finding the acceptable task start-time

windows, the program selects start-times for as many

repetitions of the task as are required, by choosing

points within the start-time windows. If start-times

can be found for the minimum number of performances

required, the task is scheduled, i.e., the timelines of

the resources are updated to reflect the performance of

the task.

As noted above, the number of scheduling

opportunities for any given task is dependent upon commit-

ments already made at the time the task is being considered.

Hence, the selection of each task start-time will have some

impact on the availability of scheduling opportunities for sub-

sequent candidate tasks. Since no satisfactory method for

determining the impact of each selection was apparent, the

initial version of the ATS has been programmed to select

the earliest possible start-time for the performance of a

task. Other alternatives can be evaluated and may be explored

in future versions of the system.

BELLCOMM, INC.

3.0 ATS System Description

The ATS System has four primary capabilities. It
can

. Generate a complete schedule (i.e., a

set of resource timelines).

• Complete a partial schedule generated

in a previous run.

3. Provide tabular and graphical outputs.

. Create and maintain a Task Data Bank

(i.e., a data library containing

descriptions of all the tasks which

might be candidates for scheduling on

a given mission).

The ATS System flow diagram is shown in Figure 3.1. The

System consists of three separate computer programs:

le A Data Bank Generator that creates and

edits a permanent task data bank,

• A Schedule Generator that generates the
resource timelines described in Section

2.3, and

• A Data Processor that displays the time-

line data in graphical form.

The programs are written primarily in FORTRAN V for the

UNIVAC 1108 computer• The current version of the ATS is

non-conversational (i.e., it must be run in the hatch mode)

and utilizes externally generated ephemeris data (Section
3.2.1).

3.1 The Data Bank Generator

The Data Bank Generator is a small auxiliary
program that is used either to create a new data bank or

to edit an existing bank. Task descriptions are input to

the program on punched cards in a specified format (Section

4.2). The cards are processed and the final task descriptions

are stored on magnetic tape (or FASTRAND file). The output

tape, or Data Bank, then contains the latest approved descrip-

tion of the tasks• These include personal tasks Ce.g., sleep,

r -7

I I

I I

o_

-)-

w

A

k

d

F'I._
I

o)

. l / _ w _-

. _ _'I__ _ 7

BELLCOMM, INC. 3-3

breakfast, dinner, etc.), system housekeeping tasks, and

scientific experiments. Note that the bank must be main-

tained and updated as changes to the task descriptions are

approved.

3.2 The Schedule Generator

The Schedule Generator is the primary program in

the ATS System. It uses the window-filling algorithm

described in Section 2.2 to generate a table of commitments

(a timeline history) for each of the designated resources.

The program has two major subsections: the input section

which processes all of the input data and the scheduler

section which generates the resource timelines.

3.2.1 Schedule Generator Input Data

As shown in Figure 3.1, there are four sources of

input data: the Task Data Bank, the ATS Ephemeris Tape,*

card data, and the History Tape.* All sources except card

data are optional.

Ephemeris data is generated by a modified version**

of the Bellcomm Apollo Simulation Program (BCMASP) and is

placed on a magnetic tape in tabular form, each table repre-

senting a time history of the availability of the named

"resource". Most tables represent line-of,sight contacts

between the spacecraft and a celestial or terrestrial "target"

such as the sun, an MSFN station, or a photographic objective.

Other tables are used to represent the spacecraft's position

in its orbit relative to certain cardinal points or areas,

e.g. the South Atlantic Anomaly, orbital noon, orbital mid-

night, etc.

The output tape generated by the BCMASP serves as

the input to a small conversion program named ATSEPHEM

(Reference 2). The latter selects the tables from the input

tape that are to be transmitted to the ATS and writes these

tables onto the ATS Ephemeris Tape in a format compatible

with the data storage configuration in the ATS (Section 5.1).

*These tape files can either be stored on magnetic tape

or FASTRAND mass storage.

**Maintenance by the Flight Mechanics Group of Depart-

ment 1025.

BELLCOMM, INC. 3-4

The functional format of an ephemeris table is

shown in Table 3.1. The table entries represent intervals

of continuous contact so that the spacecraft is shown in

contact with the resource during the intervals tll - t12 ,

t21 - t22, etc. As noted above, the ephemeris data need

only be input to the Schedule Generator if ephemeris require-

ments are specified in the descriptions of the tasks to be

scheduled. If no ephemeris requirements are specified, the

ephemeris tape is not needed to run the Schedule Generator.

Four types of card data are input to the Schedule

Generator: mission characteristics, system constraints,

program control cards, and task description data. The first

three types are input in the first section of the data deck

in free format. Task description data cards are input in

the second section.

The user can, if he so desires, input all of the

task descriptions directly to the Schedule Generator from

punched cards. The descriptions are stored on peripheral

drum storage for the duration of the run. These temporary

files are the sole source of task description data used by

the Schedule Generator. If the bulk of this data does not

vary from run to run, the user may alternately assign the

Data Bank as an input source and designate, via the program

control cards, which of the task descriptions on the bank

are to be used for that particular run. The specified tasks

are then copied from the Data Bank onto the temporary files

for the duration of the run.

The same task description cards are used to edit any

of the task descriptions stored on the drum files as well as to

add new tasks for the duration of the run. To provide the capa-

bility of manipulating the task descriptions, a Task Descrip-

tion Language (TDL), used for specifying task requirements

and performance constraints, was developed for the ATS. The

language consists of 12 standard card formats. When used

appropriately, it enables the user to perform all of the

functions described above (i.e., to add, delete, and edit

task descriptions on the temporary files). The same language

and input structure are used for the Schedule Generator and

the Data Bank Generator. Details of the TDL and the associ-

ated editing procedures are presented in Section 4.0.

3.2.2 Schedule Generator Output

The primary output of the Schedule Generator is a

set of resource commitment tables and a list of start-times

BELLCOMM, INC. 3-5

Table 3.1

Ephemeris Resource Table*

tll t12

t21 t22

tnl tn2

*tll<t12<t21<t22 < -.-<tnl<tn2

BELLCOMM, INC. 3-6

for each task. At the beginning of the scheduling process,

all of these tables are empty since no commitments have been

made. Subsequently, whenever a task is scheduled, an entry

is made in the appropriate tables to reflect the commitment

of each resource to the task for the amount of time specified

in the Task Requirement Time Diagram (Figure 2.2). Therefore,

at any point in the scheduling process, the commitment tables

contain an up-to-date history of the resource allocations.

All resources can be classified as either binary

or analog. A binary resource has only two possible states:

committed or uncommitted. Therefore, when a binary resource

is allocated to an activity or task for a specified time

interval, it is considered unavailable for any other assign-

ment over that interval.* Examples of binary resources

include crewmen, pieces of equipment, or (the occupancy of)

a scientific airlock. The configuration of a binary resource

commitment table is shown in Table 3.2a. In the table, the
"resource is shown committed to Task #i over the interval

tll - t12, to Task #2 over the interval t21 - t22, etc.

In contrast to a binary resource, requirements

on an analog resource (e.g., power, oxygen, water, etc.) are

specified quantitatively. An analog resource may therefore

be simultaneously allocated to any number of tasks as long

as the sum of all the allocations does not exceed the speci-

fied maximum. For example, assume that a particular power

source can deliver a maximum of i000 watts. Then, the only

limitation on the usage of that power source is the 1000 watt

maximum. Any number of tasks may use the power source

simultaneously so long as the total power consumption does

not exceed i000 watts. The configuration of an analog

resource commitment table is shown in Table 3.2b. The table

records the total allocation of the resource over a specified

interval; hence, RI2 represents the total commitment over the

interval tll - t21, R22 the total over the interval t21 - t31,

etc.

*An ephemeris resource is a type of binary resource since

it has only two states: available and unavailable. However,

ephemeris resources are excepted from the single allocation

rule. Thus, an ephemeris resource can be allocated to any

number of tasks over the same period of availability.

BELLCOMM, INC. 3-7

Table 3.2 Commitment Table Configuration*

a. Binary Resource Table**

Column #i Column #2

tll t12

Column #3

Task #i

t21 t22 Task #2

tnl tn2 Task #n

b. Analog Resource Table%

tl I RI2

t21 R2 2

t(n-l) 1 R(n-l) 2

tnl 0

*t .
i3 are values of mission elapsed time.

**tll<t12_t22 _ _ _... _nl-_n2.

%tll<t21<...<t (n-l)l<tnl •

BELLCOMM, INC. 3-8

All of the resource commitment tables are printed

out at the completion of the schedule, and on option, at

regular intervals during the scheduling process. Also on

option, the complete set of resource tables will be written

onto the History Tape at each priority level. Each of the n

sets of records on the tape will therefore contain all of the

information necessary to define the status of the resource

timelines at a particular point in the scheduling process.

The History Tape has two uses: to serve as an

input to the Data Processor and to serve as an input to the

Schedule Generator itself on a subsequent run. The second

use enables the user to initialize all of the resource tables

to their original status at some intermediate priority (i)

by reading in the appropriate set of records from the History

Tape. The scheduling process would then begin with the tasks

having a priority of i+l. This option enables the user to

modify an existing schedule as well as to generate a completely

new one. The option is particularly important because it

can be used to conduct economical (in computer time and

charges) investigations of variations in a basically desirable
schedule.

3.3 The Data Processor

The ATS Data Processor is used to graphically

display the timeline data produced by the Schedule Generator.

The program has two sources of input data: punched cards and

the History Tape. The card data contains program control

instructions, the names of the variables to be plotted, and

the manner and the scale to which they are to be plotted.

Timeline data is obtained directly from the History Tape.

The output of the Data Processor is a magnetic

tape which contains specific instructions for the Stromberg-

Carlson SC-4020 plotter. The latter generates graphs by

photographing the sequential displays of a cathode-ray tube.

Hence, the graphical information must be generated frame-by-
frame.

The current version of the Data Processor can

generate two types of plots: "coaxial" and "periodic".

The coaxial plots can display up to five variables on a

single set of axes. The variables may be analog resources,

binary resources, ephemeris resources, task performances,

or any combination of these. Two examples of coaxial plots

are shown in Figure 3.2. In both plots, the abscissa

represents MET measured from the SL-2 insertion on a Skylab

mission. Figure 3.2a shows a portion of the timelines

for three cre%_Len. The dat_ taken directly from the binary

3-9

COAXIAL PLOTS OF CREW TIMELINES

U ! [L

L_ ¢ N [

er _ , ,
(_,1

3 3 • 8

I I • II

A A

B ¢

Iii "li liI"I°'0 S _ O 1] [L

• ? • _ • N S E

0 S : I M T [

• : A [e

[3

A 1

K A

B

LLJ N T [

z p
(J "

IL _ _A • M

I• •0 le I• It I I I I
• • *SS It . |1' 8.$0 t.18 t.?S 18. 01,

I
_.OO

TIME -DAYS

FIGURE 3.2a

3-10

COAXIAL PLOTS OF CREWA,LUNCHA,POWER, AND S/C DAY

>-
<(
n

LU

0
O_

7-
U
Z

.J

if° i< :If77I-Y7
? • ? N • E [

JlJ I • l N T [A

• A a E p

__) • R K

I
$.o0

TIME -DAYS

FIGURE 3.2b

BELLCOMM INC 3-11

commitment tables for each crewman, shows the specific task

associated with each interval of committed time. Figure 3.2b

illustrates the different types of data that can be plotted

on one coaxial plot: CREWA is again the graphical repre-

sentation of the crew timeline for Crewman CREWA, LUNCHA shows

the occurrences of the Task LUNCHA (the lunch period for

Crewman CREWA), POWER is an analog resource representing the

total electrical power required by the scheduled activities,

and DAY, an ephemeris resource, shows the times that the

spacecraft is within line-of-sight of the sun.

The periodic plots provide the capability to

overlay data from resource commitment tables, ephemeris

commitment tables, and task performance times in order to

observe recurring patterns and the interrelationships between

the different variables. On the periodic plots, the occurrences

can be plotted as shaded boxes or as points (the point repre-

senting the midpoint of the occurrence). A portion of a

periodic plot is shown in Figure 3.3. Figure 3.3a shows

the plot legend, printed at the beginning of every plot.

Figure 3.3b shows the plot itself. The symbol for DAY

represents the times the spacecraft is in sunlight while

the symbols for REST and LUNCHA represent performances of

tasks by the same name.

3-12

PERIODIC PLOTS OF S/C OAY. REST. AND LUNCHA

0
Z
W

I,I
J

I

>- _ z

0 _F J

m
m

m
m
m

m
m
i

m
m
m

m
m

m
m
m

m

m
m

0
--I

0
i

eL

0
ii

z
W

ul
--I

I

i

3-13

Q
0

_P
#',1

Q

Q

Q
0

!

x

I,,-

0
0

i;

0
0

#

0
a

PERIO0_ PLOT_F

.

D

s/r.t_O_,AY,REST, AND LUNCHA
.

IT_

o <: >- U_

0
.J
O.

9
n"
ILl
O.

U.
0

Z
9

I

ILl

U.

BELLCOMM. INC.

4.0 The ATS Task Description Language

4.1 Language Structure

An input language was developed for the ATS to

translate task requirements and performance constraints

into statements that could be used by the ATS programs.*

The primary requireraent of the input language is that it

have sufficient capability to interpret all task speci-

fications, despite the fact that the nature of these

specifications may vary markedly from task to task. To

provide this flexibility, the language structure contains

a common base within which all task specifications must

be described. The common base is composed of the seven

descriptors defined in Table 4.1. Resource requirements
and performance constraints for all tasks must be trans-

lated by the user into three or more statements using

these descriptors. The descriptors will be discussed more

fully in Section 4.2.

4.2 Card Formats

The current version of the Task Description

Language (TDL) consists of the 12 card formats shown in

Table 4.2. The formats are divided into three groups:

. Descriptor Cards which are used to

specify a task's performance objectives,

resource requirements, and performance
restrictions.

. Annotation Cards which are used to

annotate the Descriptor Cards with

any alphanumeric information desired

by the user. (The Annotation Cards

are available as a convenience and

do not affect the scheduling of the
task in any way.)

*The Task Description Language is used by both the

Data Bank Generator and the Schedule Generator. Usage

rules apply to both programs.

BELLCOMM. INC. 4-2

Table 4.1

TASK DESCRIPTORS

Descriptor

PRIORITY

Purpose

Specifies when, relative to all other

tasks, this task will be considered

for scheduling.

OBJECTIVE

TIME

Specifies the number of task performances

and the spacing between performances.

Specifies the permissible intervals of

MET during which the task may be ini-
tiated.

ENABLE Specifies the permissible interval,

relative to the start-time of another

task, during which the task may be
initiated.

INHIBIT

AMOUNT

Specifies the interval, relative to

the start-time of another task, during

which the task may not be initiated.

Specifies the total amount of a

consumable required for one performance
of the task.

RESOURCE Specifies the time interval, relative

to the start-time of the task during

which the resource is required.

4-3

cn
r_
n-
<{
0

Z
0

I.-
0.

n-

(n
iii
Q

u)
<{
i-
(n
F-
<{

LU
..I

<{

(D

il

iii
E.

E.

"6

CD

I,LI

r

d I_" _- _ _"I,L

,, - Z Z Z Z

I

:ll 31

Z

_- o
r-- o

(n (n
<{ <{
I-- F-

0

Q
r,-
<{

Q 0
rr _..
<{ Z
r.1 uJ

o
I- (..1

(n

r,-
<{
(J

_r
0
I.-
_L

n"

(4
UJ

(n
r_
re
,<

Z
0

F-
0
Z
Z
<{

u)
r_

<{

Z
0

5
n-
F-
(/)

I.LI

I <
Z

I

i11
>" _.

ILl

0 "'
,,, r_

<_ <: <{
F- F- ..J

Q
n-
<{
(J

uJ r_
0 E
Z
w _ C3
..j r,.) E

¢J>
5 "'

i11 ,.1

,..I

ul
Z

=
I-

Z

w
F-

Z

Q

0
-I-

Q
t_
o

.,I

u.I

I--

Q
u.I

x

e_

Q
tu
I--
0

Q

O=

BELLCOMM. INC. 4-4

. Instruction Cards which are used to

provide specific instructions to the

program on the processing of the task

descriptions.

Each card (except the Last Card) has two sets of

fields: identifier fields and data fields. The first

identifier field on each card identifies the name of the

task. The latter may be any combination of letters and

numbers up to a maximum of six characters. The first

character, however, must be a letter. The second field on

each card identifies the card type which in turn determines

how the information on the card is to be processed. The 12

card types shown in Table 4.2 are the only types permitted

in the present version of the TDL and the type designation

must appear on the punched cards exactly as shown. The

remaining identifier and data fields are unique to the

particular card type and will be discussed below.

4.2.1 Descriptor Cards

Each set of task Descriptor Cards must contain

one Priority Card and one Objective Card. The remainder of

the set can be made up of any desired combination (quantity

and type) of the remaining five card types.

The card formats are structurally similar. Each

card may be submitted in free format (i.e., independent of

position). Blank columns will be ignored. However, the fields

must appear in the order specified and a delimiter must be

used between successive fields. The delimiter may be ei_ler

a slash (/) or a comma. If all of the information is included

on one card, no delimiter should be placed after the last field

on the card. However, if more than one card is needed, then a

comma should be placed after the last field on the card and the

information continued on another card. Note that these supple-

mentary cards must then appear in the data deck together and

in the proper sequence.

4.2.1.i Priority Card

The third field of the Priority Card contains an

integer k, the numerical priority assigned the task (k>l).

During the generation of the schedule, the tasks are considered

for scheduling in order of their numerical priority (e.g.,

the first task considered has a priority of one). If two or

more tasks have the same numerical priority, they will be

considered for scheduling in the order in which they were

input to the program.

BELLCOMM. INC. 4-5

4.2.1.2 Objective Card

The task's repetition requirements are specified

on fields 3 through 6 of the Objective Card. In Field 3,

variable NPERFQ is an integer defining the minimum number

of required task performances (NPERFQ_I). If this minimum

cannot be scheduled, then no performance of the task is

scheduled. In Field 4, variable DPERF is an integer defining

the maximum desired number of task performances (DPERF_NPERFQ).

The Schedule Generator will schedule as many performances as

possible between the specified minimum and maximum. If only

one performance of a task is desired, then both NPERFQ and

DPERF should be set equal to one. Note that the maximum value

of'DPERF is limited by the first dimension of an internal working

array (Array LVWIN) in the Schedule Generator. In the current

version of the ATS, the array is dimensioned (60,3). Thus,

DPERF cannot be greater than 60.

Fields 5 and 6 need only be specified for multi-

performance tasks (DPERF_I). The variable tbe t in Field 5

specifies the nominal time interval between successive

performances while tto I in Field 6 specifies the tolerance

on that nominal value. As an alternative, the user may

designate tbe t as the minimum time between successive

performances by specifying the letters MIN in Field 6.

When Fields 5 and 6 are not supplied, the performances will

be scheduled without regard to the spacing between repetitions.

4.2.1.3 Time Card

Unless otherwise specified, the Schedule Generator

assumes that the task may be initiated at any time over the

mission duration where the resource requirements and performance

constraints are satisfied. The Time Card permits the user a

degree of control over the scheduling of a task by defining

specific intervals of mission elapsed time as acceptable start-
times. These continuous intervals are considered as additional

restrictions on the performance of a task when deriving

acceptable task start-time windows and so, by the process

described in Section 2.3, the task start-time will always

be defined within the specified interval. Note that the

Time Card can be used to insert a task performance at any

particular value of MET by setting both endpoints of the

interval to that value. The performance will be scheduled

at that point provided all requirements and performance

constraints can be satisfied.

BELLCOMM. INC. 4-6

For the Time Card shown in Table 4.2, the values

of t I and t 2 in Fields 3 and 4 represent the lower and

upper endpoints respectively of the acceptable interval

(t2_tl). The endpoints are values of mission elapsed time

and must always be specified in the order shown. As indi-

cated by the dots, any number of intervals may be specified

on one card (or its continuation). For example, the values of

t 3 and t 4, representing endpoints of a second acceptable inter-

val (t4_t3), could be added to the card in Fields 5 and 6, etc.

The endpoints must be specified in pairs with one exception:

the second endpoint of the last interval on the card may be

omitted leaving the interval open-ended. In this case, the

Schedule Generator assumes the interval ends at the end of

the mission.

4.2.1.4 Amount Card

The Amount Card is used to specify that a quantity A

of consumable RNAME is required for each performance of the

task. A given quantity of each consumable is allocated for
the mission. When each task is scheduled, this total is

diminished by an amount equal to the product of quantity A

and the number of performances scheduled. Therefore, at any

point in the scheduling process the amount of the consumable

still uncommitted is known. When a task is considered for

scheduling, the maximum number of performances permitted will

be limited to the number that would require no more of the

consumable than is currently available. If that number is

less than the required minimum (variable NPERFQ on the

Objective Card) the task is not scheduled.

4.2.1.5 Enable Card

The Enable Card specifies intervals of acceptable

task start-times relative to the start-time of another task.

The latter, considered the independent task, is identified

in Field 3 while the task to which the constraint applies

(i.e., the task in Field i) is designated the dependent task.

Implicit in the specification of an ENABLE constraint is that

performances of the independent task have already been

scheduled. If no performances have been scheduled, the ENABLE

constraint cannot be satisfied and the dependent task is

not scheduled. The values t I and t 2 in Fields 4 and 5 are

the endpoints of an acceptable start-time interval relative

to the start-time of each performance of the independent

task. The values of t I and t 2 may be positive or negative

as long as t2_t I.

BELLCOMM, INC. 4-7

As indicated by the dots, the Enable Card also

permits any number of intervals to be specified on one

card (or its continuation). As with the Time Card, the

endpoints must be specified in pairs with the exception of

the last interval. The second endpoint of the last inter-

val may be omitted, leaving the interval open-ended, in

which case the Schedule Generator assumes the interval ends

at the end of the mission.

As mentioned above, all intervals defined on the

Enable Card apply to every performance of the independent

task; i.e., the acceptable start-time windows are defined

relative to every performance of the independent task.

However, the user may designate that the intervals on the

card are to apply only to the latest scheduled performance

of the independent task by inserting the symbols (LAST)

before the name of the independent task in Field 3. In this

case the card becomes

TASK/ENABLE, (LAST) TNAME, tl, t 2

Note that all independent tasks must be considered

for scheduling before the dependent task is considered. If

the dependent task is considered before any of the independent

tasks, the run will terminate with an error message (iAppen-

dix A - Section A.2.3.3).

4.2.1.6 The Inhibit Card

The function of the Inhibit Card is the inverse

of the function of the Enable Card; the Inhibit Card speci-

fies an unacceptable start-time interval relative to the

start-time of another task. As in Section 4.2.1.5, the name

of the independent task appears in Field 3 and the values

t I and t 2 in Fields 4 and 5 represent values of time relative

to the start-time of each performance of the independent

task. However, these values now represent the endpoints

of an interval in which no performance of the dependent task

can be initiated. As above, the values of t I and t 2 may be

positive or negative so long as t2_t I.

The interval defined on an Inhibit Card applies

to every performance of the independent task without excep-

tion. In contrast to the Enable Card, only one interval can

BELLCOMM, INC. 4-8

be specified on an Inhibit Card and both endpoints of this

interval must be defined. In addition, all independent tasks

must be considered for scheduling before the dependent task

is considered. If the tasks were considered in reverse order

(dependent task before the independent task), it would be

possible to schedule both tasks in violation of the inhibit

requirement. Therefore, if the dependent task should be

considered before any of the designated independent tasks,

the run will terminate with an error message (Appendix A -
Section A.2.3.3).

4.2.1.7 The Resource Card

The Resource Card is used to state a requirement

that a given resource be available for a specified interval

relative to the start-time of the task. A separate card

must be used for each requirement and only one pair of end-

points (i.e., one continuous interval) may be specified on a

card. As shown in Table 4.2, the name of the resource is

specified in Field 3 and the endpoints of the required inter-

val in Fields 4 and 5. The values: of t I and t 2 represent the

earliest and latest requirement times and, as shown in

Figure 2.2, may be either positive or negative depending upon

their position relative to the start-time of the task.

The Resource Card may be used to specify requirements

on any type of resource (e.g., binary, analog, or ephemeris).

For the binary and ephemeris resources, specification of the

endpoints t I and t 2 is sufficient and Field 6 is left blank.

For an analog resource however, Field 6 must contain a number

indicating the quantity of the resource required over the

interval. The units of this number should be the same as the

units in which the maximum permissible value was specified.

The name of the resource specified in Field 3 must

be identical to the name of the corresponding resource table

stored in the program. These names may be any combination of

letters and numbers up to a maximum of six, however, the first
and last characters of the name must be a letter. There are

three exceptions to the rule that the name in Field 3 be

identical to the resource table name. They are described below.

4.2.1.7.1 Designation of Multiple Requirements

on the Same Resource

The first exception is designed to provide for cases

in which there is more than one requirement on the same

resource in the same task description. _f, for example,

BELLCOMM, INC. 4-9

power levels on the same resource, POWER, then a number

would be affixed to each resource name in Field 3 to

distinguish between the two requirements.* The Resource

Cards for these two requirements would then become

Requirement B TASK/RES, POWER1, tl, t2, R B

Requirement C
TASK/RES, POWER2, tl, t2, RC

During the execution of the program, the final numeral is

ignored and the resource is identified by its table name,

POWER. Note therefore that resources for which multiple

requirements are defined must be assigned a name containing

no more than five characters so that the identifying numeral

may be affixed where necessary.

4.2.1.7.2 Crewman Desi@nation

The second exception to the name rule is designed

to enable the user to specify participation of a crewman

other than by name. On option, a specific skill may be

assigned to any or all of the crewmen.** The third identifier

field may then contain the name of a skill (any combination

of letters or numbers to a maximum of six characters so long
as the first character is a letter) rather than the name of

a specific crewman. The program will select the crewman by

the designated skill rather than by name. If neither identity

nor skill is important, the special designation ANY should be

placed in Field 3. This designation permits the Schedule

Generator to select any crewman whose availability is consis-
tent with the requirements of the task.

When the ANY designation appears in Field 3, the

crewmen are considered for selection in inverse order of total

committed time. The selection of a crewman for each window

at that requirement level is independent of selections made

*The necessity to distinguish between these two require-

ments will be explained in Section 4.4.

**The current version of the ATS permits only one skill

to be assigned to each crewman. No two crewmen may be assigned
the same skill.

BELLCOMM, INC 4-10

for other windows at the same level. If, for example;

Requirement A in Figure 2.3 represents the requirement for

an undesignated crewman, the selection of a crewman for each
I I !

of windows A 1 - AI, A 2 - A2, A 3 - A 3 would be independent of

the selection made for the other two. The option does not

therefore permit the user any control over the selection of

the crewman.

4.2.1.7.3 Inverse Designation for Ephemeris Resources

The third exception to the name rule permits the

user to specify that the spacecraft be out of contact with

any desired ephemeris resource. For example, the ephemeris

resource table for the South Atlantic Anomaly (named SAA)

would contain the intervals during which the spacecraft is

in contact with the SAA. If the task must be performed
outside the SAA, the third field of the Resource Card should

contain the designation (NOT)SAA. The Resource Card for

that option would become

TASK/RES, (NOT)SAA, tl, t 2

4.2.2 Annotation Cards

The Annotation Cards are designed to permit the

user to annotate the task description cards with alphanumeric

information. There are two types of cards, Title Cards and

Comment Cards; both are used in an identical manner. The

number of each type used is entirely optional with one excep-

tion; each task must be introduced by a Title Card. The cards

of each type must be numbered consecutively. This number

appears in the third field of the card (shown as k in Table

4.2) and is always followed by a blank space. All information

appearing on the card after the blank space is interpreted

as alphanumeric information. As such, it is not processed

by the Schedule Generator Input Section but is stored exactly

as it appears on the card.

4.2.3 Instruction Cards

The three instruction cards shown in Table 4.2 are

used to issue specific instructions to the programs. They

are never used as part of a set of task specifications.

4.2.3.1 The Equivalence Card

The Equivalence Card permits the user to duplicate

a task, description already in storage. It provides a conve-

nient alternative to introducing a second set of task

BELLCOMMo INC. 4-ii

description cards that are virtually identical to a set

already in storage. When encountering an Equivalence Card,

the program duplicates all of the Descriptor and Annotation
Cards for the task named in Field 3 and associates the

duplicate set with the new task named in Field i. After this

card is processed, there will be two separate, distinct, and

identical sets of cards in storage. The duplicate set should

then be modified (Section 4.5) to obtain the exact description

required for the new task. Note that further modifications

to either set of cards will not affect the other set.

4.2.3.2 The Delete Card

The Delete Card is used to delete the task named

in Field 1 from the permanent data bank. All Descriptor and

Annotation Cards pertaining to the task are deleted. This

card is only used as an input to the Data Bank Generator.

4.2.3.3 The Last Card

The Last Card has the word LAST in the first

identifier field (Field i). No other fields appear on the

card. The card is placed after the last Descriptor or Annota-

tion Card in the data deck to indicate to the program that all

of the task definitions and modifications have been specified.

4.3 Generatinq a New Task Description

There are two methods of entering task descriptions
into an ATS program: inputting the entire set of Annotation

and Descriptor Cards that define the task or using an Equiva-

lence Card to duplicate the description of a task already stored.

4.3.1 Translation of Task Specifications

Into a Set of Task Description Cards

When a new set of cards is used to define a task,

the following rules governing the input sequence must be
observed:

l. A Title Card must be used to introduce the

name of the new task. Therefore, the first

Title Card must be input before any other

card in the set.

. The Priority and Objective Cards must be

input (in that order) before any other

Descriptor Cards.

BELLCOMM, INC. 4-12

. The remaining Descriptor Cards may be

placed in any desired order. They will

be stored in the same order they are

input.

These rules are demonstrated in the Task Description Cards

for two illustrative tasks named Sleep and Breakfast shown in

Figures 4.1a and 4.1b, respectively. The cards in each set

are shown in the order in which they would be input.

A more sophisticated illustration of the translation

of task requirements and performance constraints into the

required card formats is obtained from examining Task M093,

Vectorcardiogram, one of the in-flight experiments to be

performed in the Skylab Program. The task is designed

"to measure electrocardiographic

potentials of each astronaut during

the weightless period and the immediate

post-flight period by methods that will

allow precise quantitative measurement

of the changes that occur. The experi-

ment is conducted on each crewman every

third day during the mission by obtaining

vectorcardiogram measurements at rest and

while exercising on an ergometer."*

The measurements are made by attaching electrodes to different

parts of the subject's body. The output signals from these

electrodes are processed by an auxiliary piece of electronic

equipment (the Experiment Support System or ESS) and recorded

for future transmission to earth.

The characteristics of Task M093 that are significant

to scheduling are shown in Figure 4.2. The Task Timeline

Diagram for one performance of the task is derived from this

data and is shown in Figure 4.3. Finally, Figure 4.4 shows

the set of Task Description Cards for one performance of M093A

(M093 for one subject designated Crewman A) derived from the

Task Timeline Diagram and the operational constraints given

in Figure 4.2.

*Reference 3.

BELLCOMM, INC. 4-13

Figure 4.1a

Task Description Cards for the Sleep Task

SLEEP/TITLE,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/PRI,

SLEEP/OBJEC,

SLEEP/TIME,

SLEEP/RES,

SLEEP/RES,

SLEEP/RES,

1

1

2

3

4

1

27, 27,

00:09:25

CREWA,

CREWB,

CREWC,

TASK SLEEP

ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE

CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.

THE FIRST PERIOD SHOULD NOT BEGIN PRIOR

TO 00:09:25 MISSION ELAPSED TIME.

01:00:00, 00:00:00

00:00:00,

00:00:00,

00:00:00,

00:08:00

00:08:00

00:08:00

Figure 4.1b

Task Description Cards for the Breakfast Task

BREAK/TITLE,

BREAK/COMMNT,

BREAK/COMMNT,

BREAK/COMMNT,

BREAK/PRI,

BREAK/OBJEC,

BREAK/ENABLE,

BREAK/RES,

BREAK/RES,

BREAK/RES,

1

1

2

3

2

27, 27,

SLEEP,

CREWA,

CREWB,

CREWC,

TASK BREAK

CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER

AWAKENING FROM SLEEP. ONE HOUR AND 30 MINUTES

ARE ALLOTTED FOR BREAKFAST.

01:00:00,

00:08:00,

00:00:00,

00:00:00,

00:00:00,

00:00:00

00:08:00

00:01:30

00:01:30

00:01:30

[D
O
H

C_

<

0

U

>

I

0'_
0

¢xl

g
<

_ 0

rJ
H

r_
H

L)

<

U

Z
H

121

U

414

tO
H

Z
H

<

C_

H

B

>

[
Z
0

U

<

Z
0

L)

0

D D
Z Z
H H

X

O_ 0_

I I

o o

0 _U
> _ 0

tg_

0 Z _ ZE_

I o _ _

_n _ M Zo
< m rn H_

D _n X

fT.] 0 _ O_
m rn rn _ _

C_ < _ t9

0 "-'--- _ _ C_
u_ _ _n _ 0

[.,-1 _ E-tO
_ _ 0 r.z.l ,_ _

0 0 _

,--I

,--I

i1,

0'_

0

v

H
U

X

N N
N _

N
< >

M
_ m
N

_ 0
<

m _
_ 0

0

_-t H

m m

M H

umO_Z __ U U

0 u_H H

i _ D _ _ _ _0 _ _ o _ _ < _ 0 0

D
> O

Z O
0 _ _:

_ 0 r..)
I-4

r_
r_

121

<

C_ Z
Z

_ _ 0

4-15

01

I'--

ILl

Ill
>

iii

0

(/)
I,-
I,-
<

0

II

n,"
UJ

0
O.,

/
,<
I,-
0
I,-

I-

LO
04

II

i11

0

,.J

<[
I.,-
0
I-

I-
I,-

0
t.-,

II

rr
IJJ

0
O.

.J
,<
k-
0
I.-

N

N

0

W

rr
<
F-

<

l
A

UJ
l-

Z

.1

I--
ILl
>
I-
,<
.J
ILl

0 er

I-
¢J U.I
U.J U
> z

I-- u.
Z _
i11 ILl
=E ="
m I.IJ

z
uJ O
X
,,, O

IJ.

>. '<

_ a

,,,__.
I= ...I

BELLCOMM, INC. 4-16

Task

Figure 4.4

Description Cards for M093A

M093A/TITLE,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/PRI,

M093A/OBJEC,

M093A/RES,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/RES,

M093A/RES,

M093A/RES,

M093A/RES,

1 TASK M093 - VECTORCARDIOGRAM

1 M093A DENOTES SUBJECT IS CREWMAN A.

2 TASKS MI31 AND MI71 EACH HAVE 3 MODES. THE

3 FIRST LETTER FOLLOWING THE BASIC TASK NAME DENOTES

4 THE MODE. THE SECOND LETTER DENOTES THE

5 PRINCIPAL SUBJECT.

2O

9, 9, 03:00:00, 00:08:00

CREWA, 00:00:00, 00:00:39

BREAK, 00:01:30, 00:04:30

DINNER, 00:01:15, 00:04:15

LUNCHA, 00:01:15, 00:04:15

MI31AA, 00:00:55, 00:01:55

MI31BA, 00:00:40, 00:01:40

MI31CA, 00:00:40, 00:01:40

M092A, 00:01:16, 00:02:16

MI71AA, 00:01:30, 00:02:30

MI71BA, 00:01:25, 00:02:25

MI71CA, 00:02:00, 00:03:00

POWER1, 00:00:00, 00:00:20, 10

POWER2, 00:00:20, 00:00:22, 25

POWER3, 00:00:22, 00:00:32, 10

ANY, 00:00:00, 00:00:39

BELLCOMM, INC. 4-17

As indicated on the Comment Cards, every

version of a task must be defined as a separate task.

Thus, M093 becomes three tasks: M093A, M093B, and

M093C which require crewmen A, B, and C respectively

as the principal subject. The task descriptions for

M093B and M093C would be virtually identical to M093A

except that the third identifier field of the appro-

priate Resource and Inhibit Cards would be changed to

reflect the proper subject.

In order to properly specify the operational

restrictions on the task performance, the user must

understand the meaning of the restriction and how it

applies to each of the related tasks. For example, the

restriction on the performance of M093A within three

hours after the completion of a meal translates into

inhibit restrictions on each of the subject's three

meals: breakfast, lunch, and dinner. Since it was

assumed that the crewmen would eat breakfast and dinner

together, an inhibit restriction was specified for
tasks BREAK and DINNER. It was further assumed that

each crewman's lunch period would be scheduled separately.

Since the performance restriction applies only to the

subject's lunch period, the Inhibit Card specifies a
restriction on task LUNCHA.

As discussed in Section 4.2.1.6, the data

fields on each Inhibit Card contain the endpoints of
the inhibited interval relative to the start-time of

the independent task. Hence a knowledge of the time

of the subject's final participation in the independent

task relative to its start-time is required if the data

fields on the Inhibit Card are to be specified correctly.

For example, Figure 4.1b shows that crewman A's partici-

pation in the breakfast task ends at one hour and thirty

minutes after the start of the task. Hence, the inhibited

interval on the start-time of M093A relative to the start-

time of the breakfast task begins at the end of this

participation (00:01:30) and ends three hours later

(00:04:30). All endpoints for enable and inhibit restric-

tions are similarly derived.

Finally, note that nei±her the M093 Timeline

Diagram nor the M093 Task Description Cards make any

reference to the three pieces of equipment specified in

Figure 4.2. As noted in the figure, the equipment is

only shared with tasks which cannot be performed at the

same time as M093. Since there is no potential conflict,

no Resource Cards for the equipment need be specified.

BELLCOMM, INC. 4-18

4.3.2 Use of an Equivalence Card

When an Equivalence Card is used to duplicate a

task description, that card must be used to introduce the

name of the new task. Any cards used to modify the dupli-

cated description must appear after the Equivalence Card.

The rules for modifying an existing task description are

presented in Section 4.4.

4.4 Modifying a Task Description

The primary reason for establishing a data bank

is to relieve the user of having to input all of the task

descriptions to the Schedule Generator from punched cards

every time the program is used. If a bank is to be estab-

lished and used, the requirement to modify the task

description data is twofold•

l. The capability is needed in the Data

Bank Generator to edit the descriptions

stored in the bank, thus enabling the

user to easily incorporate permanent

modifications to the task descriptions•

• The capability is needed in the

Scheduling Generator to permit the

user to alter the task descriptions

copied from the data bank. This

capability enables the user to create

unique task descriptions for the

duration of the scheduling process

without changing the descriptions

stored in the data bank.

The TDL permits three types of edits: additions,

deletions, and changes• Edits are performed card by card

using the Descriptor and Annotation Cards described above.

The first identifier field on the edit card contains the

name of the task to be edited• The program scans all of the

cards in the appropriate card group (Descriptor or Annotation)

for that task until a card is found whose identifier fields

exactly match the corresponding identifier fields on the
edit card. When a match is found, the data fields on the

stored card are deleted and replaced with the data fields

on the edit card. If, however, the word DELETE appears in

BELLCOMM, INC. 4-19

the first data field, the entire card is deleted.* If no

match is found, the edit card is added to the end of the

appropriate card group.

This editing procedure requires that each card

in a set of task description cards contain a unique set of

identifiers. When more than one requirement is specified

on the same resource in the same task description (Section

4.2.1.7.1), a different number must be affixed to the

resource name in each requirement to maintain that unique-

ness and thus permit the editing logic to differentiate

between the two requirements.

4.5 The Description Card Data Deck

A particularly important feature of the Task

Description Language is that it permits edit cards and

description cards for new tasks to be interleaved when

forming a data deck, so long as tile relative position of

the cards for each new task conforms to the input sequence

rules defined in Section 4.3. This flexibility is achieved

because each card is self-contained (i.e., it contains all

of the information required to identify and modify a particu-

lar task description). The only exception occurs when more

than one punched card. is needed to make up a Descriptor Card.

In that case, all of the punched cards making up t_le type

card must be input together in the proper order.

A simple illustration of this flexibility is

shown in Figure 4.5. Figures 4.1a and b show sets of

description cards for the Sleep and Breakfast tasks in

the order in which they would be input to the program.

An alternative input sequence for each set of cards is

shown in Figures 4.5a and b respectively. Though more

difficult for the user to read, these alternatives are

consistent with the four input sequence rules defined in

Section 4.3. If these alternatives were used, the respec-

tive task descriptions would actually be stored in the

sequence shown in Figure 4.1.

*Annotation Cards have no delimiter after the sequence
number in the third identifier field. When the DELETE

option is used, however, a comma should be placed in the

column im_ed_]y following the sequence number and the

word DELETE placed in the next field.

BELLCOMM, INC. 4-20

Figure 4.5a

Alternative Input Sequence for the Sleep Task

SLEEP/TITLE, 1

SLEEP/PRI, 1

SLEEP/COMMNT, 1

SLEEP/CO_MNT, 2

SLEEP/OBJEC, 27, 27,

SLEEP/TIME, 00:09:25

SLEEP/COMMNT, 3

SLEEP/RES, CREWA,

SLEEP/COMMNT, 4

SLEEP/RES, CREWB,

SLEEP/RES, CREWC,

TASK SLEEP

ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE

CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.

01:00:00, 00:00:00

THE FIRST PERIOD SHOULD NOT BEGIN PRIOR

00:00:00, 00:08:00

TO 00:09:25 MISSION ELAPSED TIME.

00:00:00, 00:08:00

00:00:00, 00:08:00

Figure 4.5b

Alternative Input Sequence for the Breakfast Task

BREAK/TITLE, 1

BREAK/COMMNT, 1

BREAK/PRI, 2

BREAK/COMMNT, 2

BREAK/OBJEC, 27, 27,

BREAK/ENABLE, SLEEP,

BREAK/RES, CREWA,

BREAK/COMMNT, 3

BREAK/RES, CREWB,

BREAK/RES, CREWC,

TASK BREAK

CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER

AWAKENING FROM SLEEP.

01:00:00,

00:08:00,

00:00:00,

ONE HOUR AND 30 MINUTES

00:00:00

00:08:00

00:01:30

ARE ALLOTTED FOR BREAKFAST.

00:00:00, 00:01:30

00:00:00, 00:01:30

BELLCOMM, INC. 4-21

More practical use of this flexibility is shown

in Figures 4.6 through 4.8. Figure 4.6 shows a data deck

that would be used to edit the three task descriptions shown

in Figures 4.1 and 4.4. The first two cards in Figure 4.6

,edit the original set of description cards for Task Sleep

(Figure 4.1a) by substituting the two cards in the edit deck

for the corresponding cards having the same identifier fields.

The set of cards describing the Task Breakfast (Figure 4.1b)

is similarly edited by substituting the Priority Card in

the edit deck for the one stored in the original task

description. Finally, the three Comment Cards for Task

M093A are added to the set of description cards for that

task since there are no corresponding cards in the original

set (Figure 4.4) that have the same identifier fields.

The task descriptions resulting from these edits are shown

in Figures 4.7 and 4.8.

BELLCOMM, INC. 4-22

Figure 4.6

Data Deck to Edit Tasks Sleep, Breakfast, and M093A

SLEEP/COMMNT,

SLEEP/TIME ,

BREAK/PRI ,

M093A/COMMNT,

M093A/COMMNT,

:_093A/COMMNT,

LAST

4

00:i0:00

4

6

7

8

TO 00:i0:00 MISSION ELAPSED TIME

THE 8-HOUR TOLERANCE SPECIFIED ON THE OBJECTIVE

CARD IS A WORKING VALUE AND NOT A DEFINITE

REQUIREMENT.

BELLCOMM, INC 4-23

Figure 4.7a

Task Description for Task SLEEP After Editing

SLEEP/TITLE,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/COMMNT,

SLEEP/PRI,

SLEEP/OBJEC,

SLEEP/TIME,

SLEEP/RES,

SLEEP/RES,

SLEEP/RES,

1

1

2

3

4

1

27, 27,

00:i0:00

CREWA,

CREWB,

CREWC,

TASK SLEEP

ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE

CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.

THE FIRST PERIOD SHOULD NOT BEGIN PRIOR

TO 00:10:00 MISSION ELAPSED TIME.

01:00:00, 00:00:00

00:00:00,

00:00:00,

00:00:00,

00:08:00

00:08:00

00:08:00

Figure 4.7b

Task Description for Task BREAK After Editing

BREAK/TITLE,

BREAK/COMMNT,

BREAK/COMMNT,

BREAK/COMMNT,

BREAK/PRI,

BREAK/OBJEC,

BREAK/ENABLE,

BREAK/RES,

BREAK/RES,

BREAK/RES,

1

1

2

3

4

27, 27,

SLEEP,

CREWA,

CREWB,

CREWC,

TASK BREAK

CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER

AWAKENING FROM SLEEP. ONE HOUR AND 30 MINUTES

ARE ALLOTTED FOR BREAKFAST.

01:00:00,

00:08:00,

00:00:00,

00:00:00,

00:00:00,

00:00:00

00:08:00

00:01:30

00:01:30

00:01:30

BELLCOMM, INC. 4-24

Figure 4.8

Task Description for TASK M093A after Editing

M093A/TITLE,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/COMMNT,

M093A/COM3_NT,

M093A/COMMNT,

M093A/COMMNT,

M093A/PRI,

M093A/OBJEC,

M093A/RES,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/INHIB,

M093A/RES,

M093A/RES,

M093A/RES,

M093A/RES,

1

1

2

3

4

5

6

7

M093 - VECTORCARDIOGRAM

M093A DENOTES SUBJECT IS CREWMAN A.

TASK MI31 AND MI71 EACH HAVE 3 MODES. THE

FIRST LETTER FOLLOWING THE BASIC TASK NAME DENOTES

THE MODE. THE SECOND LETTER DENOTES THE

PRINCIPAL SUBJECT.

THE 8-HOUR TOLERANCE SPECIFIED ON THE OBJECTIVE

CARD IS A WORKING VALUE AND NOT A DEFINITE

8 REQUIREMENT.

20

9, 9, 03:00:00, 00:08:00

CREWA, 00:00:00, 00:00:39

BREAK, 00:01:30, 00:04:30

DINNER, 00:01:15, 00:04:15

LUNCHA, 00:01:15, 00:04:15

MI31AA, 00:00:55, 00:01:55

MI31BA, 00:00:40, 00:01:40

MI31CA, 00:00:40, 00:01:40

M092A, 00:01:16, 00:02:16

MITIAA, 00:01:30, 00:02:30

MI71BA, 00:01:25, 00:02:25

MITICA, 00:02:00, 00:03:00

POWER1, 00:00:00, 00:00:20,

POWER2, 00:00:20, 00:00:22,

POWER3, 00:00:22, 00:00:32,

ANY, 00:00:00, 00:00:39

i0.0

25.0

i0.0

BELLCOMM, INC.

5.0 The ATS Internal Data Structure

Ordinarily, A.S.A.* FORTRAN permits only static

storage allocation: i.e., core storage can only be allocated

prior to the program's execution. When writing a program

therefore, the programmer must estimate the maximum amount of

data expected for each data variable and then allocate suffi-

cient core storage to accommodate that maximum. Once the

program is in execution, the space allocated to a particular

variable (the data array) cannot be used by any other variable

even if part or all of that assigned space is not needed.

However, during the execution of the Schedule Generator

there will be wide variations in the quantity of data generated

in each of the three major data types (task descriptions,

commitment tables, and start-time windows). Hence, the A.S.A.

FORTRAN system of static storage allocation will not provide

an efficient use of the available core storage.

A more efficient use of core storage can be achieved

with dynamic storage allocation. In this method, the dimension

of a larger linear array (called a Working Array) is defined

prior to the program's execution. Then, during execution, core

space within the Working Array can be allocated to different
variables as needed. There is no limit to the number of dif-

ferent variables to which space can be allotted or the amount

allotted to each variable. The only restriction is that the

sum total of all core space allotted to all variables be less

than (or equal to) the fixed size of the Working Array.

Two methods of dynamic allocation were used in the

ATS: dynamic array storage and linked-list storage. Dynamic

array storage was used to store the resource and ephemeris

commitment tables while linked-list storage was used to store

task descriptions and start-time windows. To further decrease

the amount of required core storage, auxiliary drum storage

was used to store all of the task descriptions. The descrip-

tions are copied into core storage from the drum when needed.

Since the Schedule Generator considers only one task at a

time, no more than one task description is ever in core storage

at any particular time.

5.1 Dynamic Array Stora@e

5.1.1 Characteristics of Array Storage

In dynamic array storage, the Working Array is

partitioned off into smaller areas, with each area containing

a different set of data. Within each area, data is stored in

*American Standards Association

BELLCOMM, INC. 5-2

consecutive locations (the ith data item is stored in the ith

location) and so a particular--item can only be accessed by

knowing its relative position within the particular data set

(and hence within the large Working Array). A small linear

array is therefore used as a "table of contents" to the Working

Array• The small array contains the name of each data set, its

starting location in the Working Array, and the number of data

items in the set. Any data item can therefore by accessed by

searching over the portion of the Working Array defined by the

starting location and number of items for the pertinent data

set. Dynamic allocation of core storage is achieved by permitting

the number and size (number of core locations) of the partitioned

areas to vary as long as the total number of locations required

does not exceed the dimension of the Working Array.

Three advantageous features of array storage are

l• It permits rapid access time to specific
data items.

, It facilitates searches of the data set

when the data elements are monotonically

increasing•

• It maximizes the efficiency of data

storage by requiring only one core

location per data item.

The second of these advantages is particularly important. During

the generation of a schedule, the commitment tables will be

continually searched to find periods of resource availability•

Since the number of table searches made during the generation of

a schedule will be quite high, a significant reduction in running

time results from storing the commitment tables in an array

configuration.*

A disadvantage of array storage is the degree of
difficulty with which a data item can be inserted into a data

*The computation time required for each search is further

reduced by performing a binary rather than a sequential search

of the data in the table. As shown in Reference 4, a binary

search always requires n comparisons when the number of table

entries lies between 2n-I and 2n. On the average, the number

of comparisons for a corresponding sequential search equals

one half the number of table entries. Hence, the saving becomes

quite significant for large tables.

BELLCOMM, INC. 5-3

set. If an item is to be inserted at the ith location in a

set containing n items, the existing items _-n the ith through

the nth__ locations must each be shifted to the next l_gher

location so that the data item may be inserted without destroying

any of the existing data. (Tne reverse process is required to

delete an item.) As the number of items in a data set increases,

the amount of data that must be shifted for each insertion also

increases and that amount soon becomes quite significant and

time consuming.

5.1.2 The Use of Dynamic Array Storage in the Schedule
Generator

In the Schedule Generator, a large one-dimension

array, the WA Array,* has Oeen set aside to store all of the

resource tables. At the beginning of each run, all of the

ephemeris resource tables on the ATS Ephemeris Tape are read

directly into the array from magnetic tape.** Portions of

the remaining area in the array are allocated to each of the

resource commitment tables, the size of each allotment being

determined by the user. For each resource (except ephemeris

resources), the user must specify the name, type (binary or

analog), and the maximum number of entries permitted. The

allotted size is then the product of the maximum number of

entries and the number of columns required for the particular
table.

Figure 5.1 shows a portion of the WA Array at some

intermediate point in the scheduling process. A small linear

array named LTABLE is used as a table of contents to the WA

Array. Each entry contains the name of the array, the type of

array, the maximum number of entries permitted, the starting
location, and the current number of entries.

The process of making a new entry into a table is

illustrated in Figure 5.2. A search of the binary resource

table has determined that a new entry is to be inserted between

the first and second entries in the table (the three arrows

labeled A in Figure 5.1). The original data is sequentially

shifted within the allocated area to vacate the required

locations and the three data items comprising the new entry

are inserted in the vacated locations. The process may be

repeated until all of the locations within the allocated area

are occupied. Any attempt to insert more than the maximum

allowable entries in any resource table will terminate the

execution of the program with a diagnostic message (Appendix A -

Section A.2.2).

*The present size of the WA Array is 12,000 locations.

**Input of ephemeris information is optional.

EPHEMERIS RESOURCE

TABLE

A

BINARY RESOURCE

TABLE

A

ANALOG RESOURCE

TABLE

5-4

WAARRAY

tll

t21

tnl

t12

t22

tn 2

tll

t21

tn 1

t12

t22

tn 2

TASK # 1

TASK # 2

TASK # n

tll

t21

t(n-1)l

tnl

R12

R22

R(n-1)2

0

FIGURE 5.1 - DYNAMIC STORAGE OF RESOURCE TABLES

STARTING LOCATION

STARTING LOCATION

STARTING LOCATION

5-5

WA ARRAY

BINARY

RESOURCE

TABLE

tll

. til

t21

tnl

t12

* ti2

t22

tn2

TASK # 1

* TASK # i

TASK #2

TASK #n

STARTING LOCATION

*NEW ENTRY ___"_J

STARTING LOCATION

FIGURE 5.2 - INSERTING DATA INTO A RESOURCE COMMITMENT TABLE.

BELLCOMMo INC. 5-6

5.2 Linked-List Stora@e

5.2.1 Characteristics of Linked-List Storage

In linked-list storage, each data item is stored

together with the core address of the next logical data item.

The core address is called a pointer and the combination of

data item and core address is called a data node or link

(illustrated in Figure 5.3a). The nodes are linked together

to form a list of data items as shown in Figure 5.3b.

Since each link in the list contains a pointer to the following

link, data items can be accessed by following the pointers

rather than by depending upon a knowledge of the item's relative

position in an array. Hence, the need for physically sequential

storage is eliminated.

The list structure shown in Figure 5.3b is called

an elementary list because each link contains a single data

item (DI) in its element field. More complex lists can be

constructed by replacing any of the data items in the elementary

list with the address of another list which is considered a

sublist of the primary list. The basic structure is illustrated

in Figure 5.3c. Very complex tree-like branching lists can be

accommodated by repeated use of this simple feature•

When list structures are used, one of the first steps

in the program's execution is to form a single list of empty

data nodes (usually called the Available Space List or ASL) from

the designated Working Array• After the ASL is formed, data

lists are created or lengthened by removing data nodes as needed

from the ASL. When a data item is no longer needed, the node

containing that item is returned to the ASL, thus achieving

dynamic storage allocation. (The only limitation to the alloca-

tion of data nodes is that the total number of cells being used

at any particular moment cannot exceed the total number of cells

originally created.)

The primary advantages of linked-list storage include:

i. That wide variations in the type and

quantity of data items can be easily

accommodated.

• That data items in a list structure

can be rearranged (e.g., added, deleted,

modified, or shifted in position) easily

by changing the appropriate pointers.

. That it facilitates the formation of more

the formation of complex lists.

5-7

O 0

r,-
UJ
I--
z

a.

,<
I.-
,<
_3

Z
0

I-
<
r_

(.9

IJ.
z
0
(J

I.U
(3
0
;[
<
I-
<
_3

UJ
rr

CJ

I-
U)

I-
Cn

..I

>.
n-
<

Z
I.U

UJ
..J
UJ

T
¢.n _.

1
r_

u
o

_ I'- IJ.L

IJJ
rr

I--
CJ

U)

..J

X
uJ
.-I
Q.

0
(J

"3

.3

_0

ILl
r,"

I

[
I--
(n

..i

T
U)

BELLCOMM, INC. 5-8

Linked-list storage does have two distinct disadvantages. As

noted above, individual data items can only be accessed by

following the pointers contained in each data node; hence,

average access time is significantly higher compared to array

storage. In addition, at least one core location at each data
node must be allocated for information related to the data

structure (e.g., the pointer address). In effect, this allo-

cation imposes an additional storage penalty (beyond the

required single core location) on each data item stored. The

use of list structures therefore is usually limited to applica-

tions where the amount of data is unpredictable and the number

of accesses will be relatively few (e.g., start-time windows and

task descriptions).*

5.2.2 The SAC-I List Processing System

The SAC-1 (system for Symbolic and Algebraic Calcu-

lations - Version I) list-processing language** was selected

for use in the ATS because, unlike most other list-processing

languages, it is compatible with A.S.A. FORTRAN. This compati-

bility exists because the entire SAC-I system, with the exception

of a few "primitive" subprograms, is written in A.S.A. FORTRAN.

The primitives are machine dependent and are usually written in

the assembly language designed for the particular computer.

5.2.2.1 The SAC-I List Structure

Each link or cell in the SAC-I system consists of

two sequential core locations or words. A cell is divided into

four fields: The first three fields are contained in the first

word while the element field completely occupies the second

word. The cell structure is illustrated in Figure 5.4. The

successor field always contains the pointer to the next cell

on the list while the element field may contain either a data

item or a pointer to another cell. _he pointer is stored as

the actual core address of the first word of the referenced

cell.) The type field contains the value of one or zero depending

upon whether the content of the element field is an address or

a data item. Finally, the reference count field contains an

integer indicating the number of different successor fields which

are currently pointing to the particular cell. The type and

successor fields are required to permit the formation of more

complex list structures. A complex list using the SAC-I cell

structure is shown in Figure 5.5.

*A more complete discussion of list structures can be

found in References 5 and 6.

**References 7 and 8.

5-9

TYPE

FIELD

(1 BIT)

REFERENCE

COUNT FIELD

(17 BITS)

SUCCESSOR

FIELD

(18 BITS)

ELEMENT FIELD

(36 BITS)

WORD1

WORD2

FIGURE 5.4 - SAC-1 CELL STRUCTURE.

5-10

t,O

..I
,-I
UJ
¢J

I

g.I
t,.,

C_

t-=

I .

[,,¢
F

----1 =_

--..-_ ,._ L _-_
I ',¢

._1 I,-

L I

|

I i

UJ
,,- I-

<_

,,¢
0 ¢3

LO

I,M

,<
I,--

i

,-I
.J
U,J
(J

--I
..I
UJ

-I
,-I
ILl
¢J

t,-.
,.I
..I
UJ
¢J

q.

I,M
I-
rat.-

I--

¢3
0

I.U I

,_ I

_i I

W
I-

u.I
m _

W

m I--

o

_3
<¢
O0

Z

UJ

I,-
(.1

I--
0'3

I,-

--I

I
1.0
u_
uJ

u.

I-
¢/P

,-I

BELLCOMM, INC. 5-11

5.2.2.2 SAC-I Operations

A different subroutine is used to store information

into each of the four cell fields and, correspondingly, a
different function subprogram is used to retrieve data from

each of the cell fields. The subroutines and function sub-

programs used to access each of the cell fields are listed in

Table 5.1. As the table shows, the FORTRAN statement

CALL ALTER(X,P)

will place the data stored in location X into the element field

of the cell P. Similarly the FORTRAN statement

X=FIRST (P)

will retrieve (non-destructively) the contents of the element

field of the cell P and place it in location X. In these state-

ments X is the name of a FORTRAN variable into (or from) which

the contents of the element field are to be transferred. The

entire word is transferred as is so that the bits may represent

a floating point number, an integer, or a string of Hollerith

characters.* P represents th: name of a FORTRAN integer vari-
able that contains the core address of the desired cell. The

address is always stored as an integer.

Similarly, the FORTRAN variables R, S, and T in

Table 5.1 contain data of the same form as is in the reference

count, successor, and type fields, respectively. They must be

stored in integer form. Note that the contents of T are restricted

to the values zero and i, since the type field occupies only 1 bit.

As shown above, a particular data item can be accessed

only byspecifying the core address of the cell containing that
data item, and so a FORTRAN variable must be defined which con-

tains the address of the cell. If, for example, the FORTRAN

variable LIST1 (Figure 5.51 contains the address of cell i,

the first data item _ eh_]_. _=_ _ _ A _ _- _^

Function FIRST. Thus, as a result of the FORTRAN statement

DII=FIRST (LIST1)

*Since the bits are transferred intact, it becomes the

user's responsibility to keep track of the type of data in each

element field so that during retrieval, the data is transferred

to an appropriately named (integer or real)location.

BELLCOMM, INC. 5-12

Table 5.1

Subroutines and Function Subprograms

Used to Access SAC-1 Cell Fields

Store* Retrieve* *

Element Field CALL ALTER(X,P) X=FIRST (P)

Reference Count Field CALL SCOUNT (R,P) R=COUNT (P)

Successor Field CALL SSUC(S,P) S=TAIL (P)

Type Field CALL STYPE(T,P) T=TYPE(P)

*The data stored in variable X, R, S, or T is placed in

the appropriate field of the cell P.

**Data is retrieved frcm the appropriate field of cell P

_ -i--^_ in variable X, , •_._ __ R, S or T

BELLCOMM, INC, 5-13

FORTRAN variable DII contains data item i. To access any other

data item on the list, the pointer on successive cells must be

followed until the location of the desired data item is found.

Thus, to access the data item in cell 2, we define the FORTRAN

variable POINT=TAIL(LIST1). The variable POINT will contain

the contents of the successor field in cell 1 which is, by

definition, the location of cell 2. Then data item 2 can be

retrieved by defining the FORTRAN variable DI2=FIRST(POINT).

In a similar fashion, the data item in cell 3A can be retrieved

by successive calls to Functions FIRST and TAIL. Thus

POINT=TAIL (LIST1)

POINT=TAIL (POINT)

POINT=FIRST (POINT)

DI 3A=FIRST (POINT)

POINT contains the address of cell 2

POINT contains the address of cell 3

POINT contains the address of cell 3A

DI3A contains data item 3A

Note that these operations have no effect on the original list

structure defined by the variable LIST1.

The accessing of the four cell fields are the lowest

level functions in the SAC-I system and the eight subprograms

used to perform these operations are called the SAC-I primitives.

Higher level routines, using these primitives, perform other

list-processing functions: creating new lists, adding items to

existing lists, and erasing lists (i.e., returning all cells
on the list to the ASL).

5.2.3 Task Description Lists

All task descriptions in the ATS are stored in a

linked list structure. Each task description is stored as two

separate lists; one contains the alphanumeric information on

the Annotation Cards and the other contains the data on the

Descriptor Cards. The relationship between the input cards

and the corresponding list structure can be illustrated by

comparing the Descriptor Cards for Task Sleep in Figure 4.1a

and the internal list structure resulting from those cards

shown in Figure 5.6. Each card, with the exception of the

Priority Card, corresponds to a separate sublist. The contents

of each field on a card is stored on a separate cell. Identi-

fier fields as well as resource names are stored in their

Hollerith representation while all values of time are stored in

minutes, the common unit of time for the ATS system.

5-14

-I
.I

o

i
t-l

b¢
¢/)
,,¢
I-

BELLCOMM, INC. 5-15

The input sequence rules in Section 4.3 require that

the Priority and Objective Cards be the first two Descriptor

Cards input for any task. The Priority Card is used to create

a new Descriptor List with the task name entered in cell 1 and

the task priority entered in cell 2. Thereafter, any card

containing the same name in its first identifier field directs

the program to that particular list. The information on the

Objective Card is always formed as a sublist to cell 3.

The list structure corresponding to a set of
Annotation Cards is almost identical to the structure shown

in Figure 5.6. The Annotation List also has the task name in
cell 1 but omits a second data cell. Thereafter each sublist

contains 13 cells; the first cell contains the card identifier

and the remaining 12 contain the alphanumeric information exactly

as it appears on the card. The information is stored in six-

character (i word) blocks, one to each cell. The second and

third identifier fields on the Annotation Cards are combined

by the program into one identifier which is stored in the first
cell of each sublist. The first character of the identifier

is the letter 'T' or 'C' depending upon the card type (Title or

Comment, respectively). The remaining characters comprise the
card number from the third identifier field.

5.2.4 Other Uses of the SAC-I System

The availability of the SAC-I system led to the use

of list structures for other applications. In the Schedule

Generator, the endpoints of the start-time windows as well as

the start-times of each task are stored as lists. These appli-

cations will be explained as part of the functional descriptions

of the Schedule Generator (Section 7.0).

5.3 Auxiliary Stora_9

5.3.1 Storage Characteristics

The Bellcomm time-shared computer system gives low

priority and poorer service to programs with large core require-

ments but does not penalize programs that use the auxiliary drum

storage facilities. It is therefore advantageous to make use of

these auxiliary facilities wherever f_asible.

In the ATS, the bulk and accessing requirements of

the task description data make it highly desirable to store

these descriptions on drum storage. The ATS can accommodate

up to 200 tasks with each containing a minimum of four (and

usually many more) task description cards. If the list structures

for all of the task descriptions were in core simultaneously,

BELLCOMM, INC. 5-16

the number of SAC-I cells required would be prohibitively

high. The Scheduling Generator however refers to only one

task Descriptor List at a time, since the tasks are processed

sequentially. These factors led to a decision to store the

bulk of the task description data on auxiliary storage,
bringing into core only one set at a time, as needed.

There are four distinct types of auxiliary bulk

storage available on the Bellcomm computer system -- magnetic

tape, two classes of magnetic drum, and FASTRAND (which is also

a drum, but of enormous capacity). Tape is not a suitable

medium for storing the task descriptions because it allows only

sequential reading and writing operations, whereas the task

data will have to be retrieved in a data dependent order.

(Tape is usually used to store the Permanent Data Bank, the

ephemeris resource tables, and the History Tape, although they

can equally well be kept on FASTRAND.) The characteristics of

the three drum devices are shown in Table 5.2. Logically, all

three devices appear identical to the user. The unit to be

used can be specified on a control card at run time, or alter-

natively may be left to the system to assign based on availa-

bility. Ordinarily, the two fast drums are only used for

scratch storage during execution of a program while

FASTRAND is used for long term storage of programs and data.

Records may be written into and retrieved from an

assigned file either sequentially or, with a little more effort,

in arbitrary order. The latter option is used in ATS for the

task descriptions. Each task description occupies its own

standard sized record; the record size being large enough to

accommodate a rather lengthy description. A special subroutine

handles the retrieval and storage of each record via a similarly
sized buffer block in core.

5.3.2 Storage of the Task Descriptions

5.3.2.1 The Symbolic Representation of a Linked-List

When a task description is stored in core in linked-

list structure, its complex branching structure is defined through

the use of the branching nodes (the cells containing sublist

pointers in their element fie]ds) as i]]nstrated i_ _igure 5_6_

However, a substitute notation is required to store the task

description data in a linear array on the storage drum.

A linked-list structure may be represented symbolically

by separating successive data items on a list by commas and

enclosing the set of data items with parentheses. Using this

notation, the simple list structure in Figure 5.3b would be

represented as

5-17

©

0

A

O
C)

<9 tn

O

o
o
o

o

o
o
o

o

o

u-)

o,i

cq

.4

,-I

o
u]

}-

G0
o
,-I
,-I

D

X
I-I

O

C)

u]
-,-I

_n 0'1

0 0

-

(I) -_I

.0

0

O_

0

t.o

If)

o

o

o

o

.o
c_

I

¢xi
(3o
p_

I

H

BELLCOMMo INC. 5-18

(DI1,DI2,DI3,DI4)

Similarly, the symbolic representation of the list structure

in Figure 5.5 would be

(DII,DI2, (DI3A,DI3B) ,DI4, (DI5A,DI5B,DI5C))

5.3.2.2 Conversion of a Linked-List Structure to an Interval

Representation of its Symbolic Form

In the ATS, task description data is removed from

the linked-list structure and converted to a continuous string

of Hollerith symbols of the form shown above. Six-bit codes

for the right parenthesis, the left parenthesis, and the comma

are inserted into the string where appropriate. The 36-bit
data items are extracted from the element fields and included

at the appropriate points in the string. The six-bit code

representing the letter O is inserted into the string immedi-

ately preceding each data item. The six-bit code is used to

signify the presence of a data item. When the code is detected

during the reconstruction of a list, the next 36-bits are

placed in the element field of an available cell without regard

to the type of data (integer, floating point, or Hollerith)

that it may represent.

Two subroutines are used to make these conversions.

A call to Subroutine TWRITE

CALL TWRITE (O,X,BUFFER) *

converts List X to its symbolic form by extracting the data item

from the element field of each cell on the list and inserting

the necessary delimiters (commas and parentheses) where neces-

sary. The resulting bit stream is placed in successive locations

in Array BUFFER. Similarly, Function Subprogram TREAD is used

to reconstruct the list from its symbolic representation. The
statement

X=TREAD (0, BUFFER) *

will reconstruct the list described by the bit stream in Array

BUFFER by placing each of the data items into the element field

of an available data cell and connecting the cells in the manner

indicated by the position of the delimiters.

*Reference 8.

BELLCOMM, INC. 5-19

5.3.2.3 Task Description Storage Files

As noted above, the task descriptions are stored

on magnetic drum files for the duration of the run. The

descriptions are stored on two separate files: the first

file contains the symbolic representation of the Annotation

List for each task while the second file contains the symbolic

representation of the Descriptor List for each task. On each

file, the data pertaining to each task is stored in a separate

logical record. The records appear in the same sequence on

both files. Therefore, when the ith record on the first file

contains the Annotation List for a particular task, the ith

record on the second file will contain the Descriptor List--
for the same task.

Each file is created by first constructing the

symbolic representation of the linked-list in Array BUFFER

(Section 5.3.2.1) and then writing the contents of the array

onto the file. Note that the entire contents of Array BUFFER

are written onto the file regardless of how many locations

within the array were actually used for the symbolic represen-

tation of the list. The logical records are therefore all of

equal length which permits them to be randomly accessed by

specifying the record number.

The FORTRAN statement

CALL DWRITE (IUNIT, BUFFER, NWDS,K)*

writes a record of length NWDS from Array BUFFER onto the kth

record of the drum file assigned as logical unit IUNIT. Sub--C

routine DWRITE computes the relative address of the file's jth

sector by assuming equal length records of size NWDS and equal

length Sectors of 28 words. Hence the relative address of the

beginning of the kth record on the file becomes K(NWDS)/28.

Note therefore that the size of Array BUFFER, variable NWDS,

must be a multiple of 28.

Retrieving a record from the file is similarly

performed by Subroutine DREAD where the statement

CALL DREAD (IUNIT, BUFFER, NWDS, K)*

causes the kth record of length NWDS to be copied from the

file into Arra----yBUFFER.

*Reference 8.

BELLCOMM. INC 5-20

5.3.2.3 Summary

In summary, writing a Task Descriptor or Annotation

List onto a drum file is a two-step process: first the conver-

sion of the internal linked-list structure to a bit stream

representing the symbolic representation of the list and second,
the placement of that representation onto the drum file.

Retrieving a list from the file is the logical inverse of

the two-step writing process: the record containing the

symbolic representation of desired list is copied from the

appropriate file into Array BUFFER and then the linked-list

structure is reconstructed from the contents of the array.

Note that the dimension of Array BUFFER places a practical

limit on the number of Descriptor and Annotation Cards that

can be included in a single task description. In the current

version of the ATS, Array BUFFER is dimensioned to 308 locations

which means that a task description may have no more than 35

Descriptor Cards and no more than 17 Annotation Cards.

BELLCOMM, INC.

6.0 Functional Description of the Data Bank Generator

The Data Bank Generator is used to create and

maintain a permanent Data Bank. The bank contains the

descriptions of each task as well as a table of contents

that indexes all of the tasks in the bank. The bank may
be stored on magnetic tape or FASTRAND; its format and

use are independent of the storage medium.

The format of the Data Bank is shown in

Figure 6.1 where each rectangle represents a separate

logical record. The first record on the file contains

the value of the FORTRAN integer NTOC, the number of

tasks stored in the bank. The TOC array in the second

record serves as the bank's table of contents. The first

column of each entry in the array contains the name of the

task, the second column contains the task priority, and the

third column contains the date of the task's last revision.

The remainder of the bank contains the task

descriptions. Each description is stored on two sequen-

tial records. The first record contains the symbolic string
representation of the Annotation Card data while the

second record contains the Descriptor Card data stored in
the same form. The maximum number of tasks in the Data

Bank is limited by the dimension of the TOC array. The

program currently provides for a maximum of 200 entries.

The overall flow diagram for the Data Bank

Generator* (Routine TDBANK) is shown in Figure 6.2.**

After setting up the Available Space List, the program

reads a NAMELIST input that includes the value of flag

NEW. When the value of NEW is left at zero, the program

assumes that an existing bank is to be modified. Under

this assumption, it reads the value of NTOC and the TOC

array from the bank and then transfers all of the task

escriptions from the permanent bank to drum storage

Section 5.3.2._ before reading the incoming task descrip-

tion cards. The value of NEW is set equal to one when a

*A description of the job deck required to use the

Data Bank Generator is presented in Section 9.1.

**The letters inscribed by circles in all of the flow

diagrams represent points in the functional flow.

6-2

PR_CF_DING PAGE BLANK NOT F_

NTOC

TOCARRAY

TASK 1

ANNOTATION LIST

TASK 1

DESCRIPTOR LIST

TASK 2

ANNOTATION LIST

TASK 2

DESCRIPTOR LIST

TASK 3

ANNOTATION LIST

FIGURE 6.1 - FORMAT OF THE DATA BANK FILE.

' r

6-3

YES

I ROUTINE TDBANK t

+
[SETOPABLI

+
I READ NAMELIST INPUT

READ NTOC AND TOC ARRAY

FROM PERMANENT DATA BANK

+
TRANSFER ALL TASK DESCRIPTIONS

FROM THE PERMANENT DATA RANK

TO TEMPORARY STORAGE

READ A TASK DESCRIPTION CARD

I

DETERMINE CONTENTSOF I

IFIELD (1) AND FIELD (2)

I STOREREMAIN'NGCARODATAI

CORE ONTO APPROPRIATE RECORD

YES

I FIND REQUIRED TASK IN TABLE OF CONTENTS I

I READ IN REQUIREDTASK LIST

YES _NO

I SET UPTABK LISTS

FOR NEW TASK+

I MODIFY NTOC ANDTOC ARRAY

'l I

_NO _'
I ERROR EXIT

REWIND 2t [[
I

[WR,TENTOCI

I *I WR,TETOOARRAYI
+

J TRANRt=F_ ALL T.'_.$. v. 9ESCR!,U'T!CNS J

I FROM TEMPORARY STORAGE TO THE I
PERMANENT DATA BANK

FIGURE 6.2 -- OVERALL FLOW DIAGRAM FOR THE DATA BANK GENERATOR.

BELLCOMM, INC. 6-4

new bank is to be created. In this case the program

proceeds directly to reading the task description cards.

All modifications specified by the incoming

description cards are made to the task descriptions stored

on the drum files. NTOC and the contents of the TOC array

are also modified as necessary. When the modifications

are complete (as indicated by the Last Card), a new data

bank is created with the updated information.

The flow diagram for processing a Description

Card is shown at Point A in Figure 6.2. When a card is

read, the contents of the first two identifier fields are

placed in the first two locations of Array FIELD. If the

card is a Descriptor Card, the contents of the remaining

fields are placed in successive locations in the FIELD

array; if the card is an Annotation Card, the remaining

information is placed, character by character, into Array

COMENT. After the data on the card has been interpreted

and stored, tests are made to determine if the list currently

in core (i.e., the list required by the previous card) is

the one needed by the current card. If so, the program

transfers to the appropriate subsection where the modifi-

cations are made. If the list in core is not the required

one, it is written out onto the appropriate record on the

drum and a search is made of the task names in the TOC array

to determine a match with the name stored in FIELD(l). When

a match is found, the location of the corresponding record

is obtained from the fourth column of the array for that

entry, and the required list is retrieved from the drum

file as described in Section 5.3.2. The program then

transfers to the appropriate subsection to perform the
modifications indicated on the card.*

The same methodology is used to modify the

Annotation and Descriptor Lists. The information in the

appropriate array (COMENT or FIELD) array is put into a

list structure. The task sublists are searched until all

of the identifier fields on the sublist match the respec-

tive fields in the new sublist. When a match is found,

the old sublist is deleted or replaced with the new sublist

as indicated. If no match is found, the sublist is added

to the existing list structure.

If the name in FIELD(I) cannot be matched with a

name in the TOC array, the program assumes that the name in

*See Reference 9.

BELLCOMM, INC. 6-5

FIELD(I) is the name of a new task. The identifier in

FIELD(2) must then be 'TITLE', indicating a Title Card,

or execution of the program will terminate with an error

message.* If the card is a Title Card, the name is added

to the TOC array, NTOC is increased by one, and the list

containing the one Title Card is written out as the last

record on the Annotation File. An empty record is also

written out onto the Descriptor File to reserve that

record for the task's descriptor list and hence preserve

the parallelism between the two drum files.

There are two exceptions to this flow: the

processing of Equivalence and Delete Cards. When the

input card is an Equivalence Card, the TOC array is

searched to determine a match with the name in the third

identifier field on the card rather than FIELD(l). When

the match is found, the Descriptor and Annotation Lists

for that task are copied into core and modified by placing

the name of the new task in the first cell of each list.

The name of the new task is added to the TOC array, NTOC

is increased by one, and both lists are written out as

the last record on their respective drum files. NOte that

the lists for the new task are now separate and distinct

from the corresponding lists for the original task. Subse-

quent modifications to either task description will have no

effect upon the other.

When a task is to be deleted, NTOC is reduced

by one and all subsequent entries in the TOC array are

moved up one location, thus removing the reference to the

deleted task. When the Last Card is encountered, the task

descriptions will be transferred from the drum files to the

Permanent Bank using the record numbers entered in the fourth

column of the TOC array. Hence, the records for the deleted

tasks will simply not be transferred. The final table of

contents as well as the Annotation and Descriptor Lists for

each task are printed out as the information is transferred

to the Permanent Data Bank File, thus giving the user a

complete description of the contents of the bank.

*Section A.I.I.

BELLCOMM. INC.

7.0 Functional Description of the Schedule Generator

The Schedule Generator is divided into four

functional areas: executive control, initialization,

window-finding, and scheduling. The executive control

area exercises overall control of the program's exe-

cution while the initialization area controls the

processing of all input data. Start-time windows for

each task are determined by the window-finder. Finally,

the scheduler section selects specific start-times from

points within the start-time windows that are consistent

with the task's performance objectives and "schedules"

the task by updating the appropriate resource tables.

As stated above, the primary output of the

Schedule Generator is a time history of the commitments

for each resource and a list of start-times for each task.

The data is printed out at the completion of the schedule

and, on option, at regular intervals during the scheduling

process. The frequency of the intermediate printout is

specified by the user. Also on option, the program will

print out a table illustrating the derivation of the task

start-time windows thus enabling the user to observe the

origins of the output data.

7.1 Executive Control

Figure 7.1 shows the overall flow diagram for

the Schedule Generator* (Routine MAIN). The scheduling

loop begins at Point A, immediately after initialization.

The variable IPRIOR is incremented by one and a list is

compiled (from a table of contents) of all tasks having a

priority equal to IPRIOR. The tasks on this list are then

considered for scheduling in the order of their occurrence.

After the descriptor list for the task in

question has been retrieved from the auxiliary storage

file, three preliminary tests are made. First, the quantity

of each resource specified on an Amount Card is checked to
insure that there is a sufficient amount available to

support the minimum number of performances required (NPERFQ).

If there is an insufficient amount of any resource, the

task cannot be scheduled and so is not considered further.

Similarly, a check is made to insure that each independent

task specified on Enable and Inhibit Cards has already been

*A description of the job deck required to use the

Schedule Generator is presented in Section 9.2.

7-2

@

ROUTINE MAIN I

+
I SETUPASLl

I,

=,.. CALL SUBROUTINE SETUP TO IINITIALIZE SCHEDULE GENERATOR
i

v _ YES

I IPRIOR=IPRIOR+I I

+

" I
iPR'NTOUTALLRESOURCETABLESI

I I
[PRiNTOUTARRAYORDER I

YES NO

v

Ii CALL SUBROUTINE SCHED TO]FIND TASK START-TIMES

I 'ORDER='ORDER+II

IUPDA'EOROER'RR'YI

I_IGURE 7.1 - SCHEDULE GENERATOR OVERALL FLOW DIAGRAM.

[PREPARE A LIST OF TASKS, LTASK, +

I HAVING PRIORITY IPRIOR I END

'--
_ I REAO,NDESCR,PTOR",STOFTHEI

OR,, I NE_TTASKON;STLTAS_ I
_ --'_ES I F,ND_PERFOANODPERF_ROMI
1 I_,NTALLR__RcETARLESI I T.EDESCR,_T _

YES

CALL SUBROUTINE CREW TO SETUP
CREW REQUIREMENTS

YES NO ="

._ I CALL SUBROUTINE WINDOW TO I
I FIND TASK START-TIME WINDOWS

BELLCOMM, INC. 7-3

considered and that where applicable, the number of

performances scheduled is not less than NPERFQ. Again,

if these conditions are not satisfied, the task cannot

be scheduled and is not considered further.

Crew assignments are made by Subroutine CREW.

The subroutine replaces all skills named in the task Descrip-

tor List with the name of the crewman who possesses that

skill and then collects and counts the unassigned crewmen.

The subroutine checks to insure that

Ii The same crewman is not specified by

name and skill, and

• The number of unassigned crewmen is

not less than the number of undesig-

nated crewmen (i.e. ANY) required.

If either or both of these conditions cannot be met, the

variable NOCREW is set equal to one indicating that the task
cannot be scheduled.

When all of the preliminary tests are satisfied,

the task start-time windows are determined by a call to

Subroutine WINDOW, the executive program for the window-

finder area. If one or more windows are found (TSKWIN>0),

an attempt is made to schedule the task by calling Subroutine

SCHED, the control program for the scheduler section. The

output of Subroutine SCHED is a list of task start-times.

The variable IORDER, representing the number of tasks

processed, is then increased by one. The task name and the

address of the start-time list are inserted as the IORDER

entry in the ORDER array (columns 1 and 2 respectively).

If no performances are scheduled, a zero is entered in place

of the list address•

When all of the tasks at the priority level have

been considered, all of the resource tables and the working

arrays are written out onto the history tape, if the input

variable ITAPE is equal to zero. The resource tables are

also printed out whenever the variable IPRIOR is an exact

multiple of the input Print Frequency Flag, IPRINT.

7.1.1 The History Tape

The format of the History Tape is shown in

Figure 7.2. A general header, written at the conclusion

of the initialization process (Section 7.2), includes all

pertinent initialization data; i.e., the entire contents

7-4

GENERAL HEADER

IPRIOR, IORDER, IMULTI

WORKING ARRAYS

1ST LIST OF START-TIMES

2ND LIST OF START-TIMES

IMULTI LIST OF START-TIMES

IPRIOR, IORDER, IMULTI

WORKING ARRAYS

1ST LIST OF START-TIMES

2ND LIST OF START-TIMES

IMULTI LIST OF START-TIMES

FIGURE 7.2 - HISTORY TAPE FORMAT.

BELLCOMM, INC. 7-5

of the WA array (including ephemeris data), the task

table of contents, the initial configuration of the

working arrays, and the final configurations of the

task descriptions. The intermediate data, written

at every priority level, contains the resource commit-

ment tables, the working arrays (ORDER, LTABLE, etc.)

and the symbolic string representation of every list
of task start-times.

The intermediate data is written out in

IMULTI+2 separate records, where the variable IMULTI
is the total number of start-time lists whose addresses

are entered in the ORDER array. The first record of

the set contains the values of IPRIOR, IMULTI, and

IORDER, the total number of entries in the ORDER array.

The working arrays are written out onto the second

record and the remaining IMULTI records contain the

symbolic string representation of the start-time lists

in the order of their appearance in the ORDER array.

7.2 Initialization

All initialization procedures are controlled

by Subroutine SETUP. The flow diagram for the subrou-

tine, which is called directly by the executive, is

shown in Figure 7.3.

The value of the input variable IPRIOR determines
the source of the initialization data. A value of IPRIOR

equal to zero indicates that a completely new schedule is

to be generated. For this option SETUP calls Subroutine

TABIN which initializes all data tables from inputs speci-

fied in the NAMELIST. TABIN makes the necessary entries

in Arrays LTABLE (Section 5.1.2), DTABLE (an array containing

the maximum quantities and usage rates for each consumable),

and CRWSKL (an array containing the name of each crewman

and his assigned skill). In addition, it reads ephemeris

data directly into the WA array and allocates space in

that array for each of the resource commitment tables

specified in LTABLE. After initialization of the tables,

the descriptions of the tasks specified in the NAMELIST

input are transferred from the Permanent Data Bank to the

4

I _
I CALLSOBROD""E'N'TAt1TO INITIALIZE FROM THE

INPUT HISTORY TAPE

?
Fs....u,,_ES,TO,il

YES +NO

C_,LL NE TABIN TO 'NI- /
"TtALtZE TABLES FROM tNPUT

ATA

YES _A

IoE,....s.....R,F_.......I
4'

I,TO.E_........,....,AI

t WRtT'E_ TASK LtST CLt_ENTLY _N ICORE ONTO APPROPRIATE RECORD {

YES

FIGURE 7,3 _ FLOW DIAGRAM FOR THE SCHEDULE GENERATOR INITIALIZATION AREA.

NO YES

l,o......ZEO.....IHtSTORY TAPE

BELLCOMM, INC. 7-7

temporary drum files. (If no descriptions are to be taken

from the Data Bank, the variable IGNORE must be set equal

to 'ALL' in the NAMELIST input.)

A value of IPRIOR greater than zero indicates

that a previously generated schedule is to be completed

and so the program must be initialized at some intermediate

point with data from the History Tape. Under this option,

SETUP calls Subroutine INITAL which reads in the general

header and the working arrays as they appeared after all

tasks at the IPRIOR priority level had been considered.

Additions and modifications to these task

descriptions are accomplished in exactly the same way as

in the Data Bank Generator (Figure 6.2) with one excep-
tion: the Delete Card cannot be used in the Schedule

Generator. In the latter program, the task may be removed

from scheduling consideration by setting the variable

NPERFQ on the task's Objective Card equal to zero. The

initialization process is finished when the Last Card is

encountered. At that point the input data and all of the

task descriptions are written onto a new History Tape

(unless inhibited by setting the variable ITAPE equal to

one in the NAMELIST input) and control is transferred back
to the executive area.

7.3 The Window-Finder

The window-finding process closely follows the

basic algorithm described in Section 2.3; i.e., all start-

time windows for the ith requirement (or level) are deter-

mined between the limits BLIMIT and ELIMIT, the endpoints
of a start-time window defined for the i-i level.

As illustrated in Figure 2.3, the determination

of thenext level at which start-time windows are computed

depends upon the result of the computations at the current

level. For example, the search for windows at Level C was

attempted because an acceptable window was found at Level B.

Similarly, computations at Level D were attempted because

acceptable windows were found at Level C. However, when no
• l

windows were found at Level D for the wlndow C 1 - CI, the

BELLCOMM, INC. 7-8

the new limits C 2 - C 2 were substituted and the computations
!

for the Level D were repeated. If the window D 1 - D 1 had

not been found, the program would have had to return all the
!

way to the Level A, substitute A 2 - A 2 for the window limits,

and then proceed down to the Level B again.

The uncertainty of which level will be required

next necessitates that the data pertaining to all levels be

equally accessible. To achieve random accessing of the

sublist structures in the Descriptor List, the address of

each requirement and constraint sublist (with the exception

of Amount Requirements) is placed in sequential locations

in the REQ array. Hence for the Sleep Descriptor List shown

in Figure 5.6, REQ(1) would contain the address stored in

the element field of cell 4, REQ(2) the address stored in

the element field of cell 5, etc. Hence, access to the ith

sublist can be quickly obtained through reference to a

subscripted variable.

The endpoints of the corresponding start-time

windows for each requirement level are stored in two parallel

lists, one containing the lower values for each window at

that level, the other containing the higher values for the

same windows. The addresses of these lists are similarly

stored in an array. The first column of the ith entry in

array LVWIN contains the address of the list of--lower values

while the second column of the same entry contains the

address of the list of higher values. The configuration is

illustrated in Figure 7.4 for the start-time windows shown

in Figure 2.3. Note that the figure does not show all of

the endpoints. Each pair of endpoints is discarded as it

is used to define the limiting values to the next level.

The figure illustrates the contents of the array at the
!

point when window E 1 - E 1 is discovered. Hence, the end-
1 I ! l

points,for windows A 1 - AI, B 1 - BI, C 1 - CI, C 2 - C2, and

D 1 - D 1 have already been discarded.

Subroutine WINDOW exercises overall control of

the window-finding process. A flow diagram for the sub-

routine is shown in Figure 7.5. The window-finding process

begins after the addresses of descriptor sublists are

entered in the REQ array and the variable& BLIMIT, ELIMIT,

and I (the level indicator) are initialized. Each sublist

..J

o_

q_

,..I
o

I,u

.J

8

ol

I

Io

t-

!

t_

o

|

m

o

o

o

7-9

oo

Lo

o

o'J

o

o

qL'B

u.l

I

o

y

o

I'-

o

qL'B

o

c_

u.I

I--

I--
flJ
u.
o
I.LJ

0

I

w
r1-

LI.

7-10

I SUBROUTINE WINDOW I

LOAD ADDRESSES OF APPLICABLE DESCRIPTOR

SUBLISTS INTO THE REQ ARRAY

BLIMIT = 0

ELIMIT -- TOTAL MISSION TIME
I=1

L,

SET TYPE EQUAL TO THE CONTENTS OF THE

FIRST CELL ON THE ith SUBLIST

4--

CALL SUBROUTINE

OVRALL TO DETERMINE

START-TIME WINDOWS

CALL SUBROUTINE

ENWIN TO DETERMINE

START-TIME WINDOWS

CALL SUBROUTINE

INWIN TO DETERMINE

START-TIME WINDOWS

L
r

L
r

YES

YES

YES

TYPE = 'TIME'

NO

TYPE='ENA

NO

TYPE = 'INHIB'

NO

I CALL SUBROUTINE RESRCE TO !DETERMINE START-TIME WINDOWS

FIGURE 7.5a - FLOW DIAGRAM FOR THE WINDOW-FINDER AREA

7-11

HAVEANY
WINDOWSBEENFOUND

ATTHISLEVEL?

YES

NO

NO YES
THE LAST

RECORD THE WINDO_I_WSAT THIS LEVEL
AS THE TASK START-TIME WINDOWS

SET BLIMIT & ELIMIT TO LOWER AND UPPER
ENDPOINTS OF THE FIRST WINDOW AT THIS LEVEL

DISCARD THESE WINDOW ENDPOINTS

! ,=,+11

NO
DPER F > 1

YES

I=1

I=1-1

NO YES
(I, 1)

FIGURE 7.5b - FLOW DIAGRAM FOR THE WINDOW-FINDER AREA (CONTINUED).

BELLCOMM, INC. 7-12

is treated separately. The type designation is retrieved

from the first cell of the sublist and the program transfers

to one of four subroutines depending upon the contents of

that cell: Subroutine OVRALL attempts to determine start-

time windows for time constraints, Subroutine ENWIN is used

for enable constraints, Subroutine INWIN for inhibit con-

straints, and Subroutine RESRCE for resource requirements.

When control is returned to WINDOW, the requirement level

indicator I is reset depending upon the results of the

search for start-time windows. If acceptable windows have

been found, the variables BLIMIT and ELIMIT are reset to

the endpoints of the first window found at that level.

The endpoints are removed from their respective lists, the

level indicator is increased by one, and the process is

repeated. When no windows are found, the level indicator

is decreased until windows are found and the process is

reinitiated from that point.

When the level indicator is at the last level,

the windows at that level are recorded as acceptable start-

time windows for the task. The windows are recorded in the

complex list structure illustrated in Figure 7.6. Each

sublist of the List TSKWIN contains all of the information

relating to one start-time window. The first two cells

contain the lower and upper endpoints of the window. If

required, the remaining cells on the sublist contain the

names of the crewmen selected by the program to fulfill the

'ANY' requirements. These names will not necessarily be

the same for every window.

7.4 The Scheduler Area

The Scheduler Area selects start-times for

individual task performances from points within the task's

start-time windows. The start-times are selected to be

consistent with the task's performance objectives. The

output of the Scheduler Area is a list of start-times,

START, the configuration of which is virtually identical

to the configuration of the list of start-time windows,

TSKWIN. In fact, there is only one difference: the first

two cells on each sublist in TSKWIN (Figure 7.6) contain

the endpoints of a task start-time window, while in list

START, these two cells are replaced with one cell containing

the actual start-time of the performance. As in TSKWIN,

the remaining cells on the list, if any, contain the names

of the crewmen selected to fulfill the 'ANY' requirements

for that start-time.

7-13

TSKWIN

E1

f

°111 I7
E'I I

._1

I'----CREW A I I

FIGURE 7.6 - CONFIGURATION OF THE LIST OF ACCEPTABLE TASK START-TIME

WINDOWS AS OUTPUTTED FROM THE WINDOW-FINDER AREA.

BELLCOMM, INC. 7-14

Subroutine SCHED has overall control of the

Scheduler Area. Its flow diagram is shown in Figure 7.7.
If only one performance of the task is to be scheduled

(DPERF=I), the program selects the lower endpoint of the

first start-time window on List TSKWIN. If more than one

performance is desired, the 'Objective' sublist is inter-

rogated further to determine how these multiple performances

are to be spaced. If both a nominal time between performances

(TIMBET) and a tolerance on that time (TOL) are specified,

the program transfers control to Subroutine MULTI which

determines the number of performances (NPER) that can be

scheduled consistent with the specified performance objec-

tives. If NPER is less than NPERFQ, the minimum number

required, the task cannot be scheduled. If NPERF>NPERFQ,

control is transferred to Subroutine STIME which _elects

the actual start-times for NPER performances.

If TIMBET is not specified or is specified as a

minimum, SCHED transfers control to Subroutine ASTART.

ASTART selects the minimum time between performances as

the greater of two quantities: the specified value of

TIMBET or the time required for one performance of the

task (defined as the length of time from the earliest

beginning of a resource requirement to the latest end time

of a resource requirement). The subroutine then selects

as many start-times as possible to a maximum of DPERF.

Again the task will not be scheduled if NPER<NPERFQ. If the

task is to be scheduled, the program transfers to Subroutine

ENTRY which updates all of the required resource tables and

decreases the appropriate amount of each required consumable

from the total stored in array DTABLE.

7-15

SUBROUTINE SCHED I

NO

SELECT THE LOWER ENDPOINT OF

THE FIRST START-TIME WINDOW

AS THE TASK START-TIME

DPERF>I

TIMBET = 0

YES

NO

YES
TOL = 'MIN'

NO

CALL SUBROUTINE MULTI TO FIND

THE MAXIMUM NUMBER OF PERFOR-

MANCES, NPER, THAT CAN BE

SCHEDULED

NO
V

CALL SUBROUTINE STIME TO SELECT

START-TIMES FOR NPER PERFORMANCES

CALL SUBROUTINE ENTRY TO

SCHEDULE THE TASK BY UPDATING

ALL APPLICABLE TABLES

L,
f

[RETURN J

CALL SUBROUTINE ASTART TO SELECT

NPER START-TIMES FOR THE TASK

NO

r

1
FIGURE 7.7 - FLOW DIAGRAM FOR THE SCHEDULER AREA

BELLCOMM. INC.

8.0 Functional Description of the ATS Data Processor

The Data Processor, like the Schedule Generator,

is divided into four functional areas: executive control,

initialization, coaxial (horizontal) plot generation, and

periodic (vertical) plot generation.* As their names

imply, the executive area exercises overall control of the

program's execution, the initialization area controls the

input of data from the History Tape, and the plot genera-

tion areas control the generation of the instructions and

the selection of the appropriate data to produce the plot
requested.

Plots generated by the Data Processor are

actually created on the Stromberg-Carlson SC-4020 High-Speed

Microfilm Recorder, a computer-driven plotter designed to

operate as peripheral equipment to a high-speed digital
computer. Each plot frame is first exhibited on the

recorder's cathode ray tube. The tube face is then photo-
graphed and copies are reproduced on 35mm film or nine-inch

sensitized vellum (7.5 inch square plot). Plots requiring

more than one frame must be generated on a frame-by-frame
basis.

The construction of the Data Processor is heavily
influenced by the characteristics of the SC-4020 and its

software library as well as the construction and operating

characteristics of the AUPLOT system (References ii and 12)

which was used as an interface bewteen the ATS Data Processor

and the SC-4020 software. Therefore, a discussion of the

characteristics of these systems is presented in Section 8.1.

Descriptions of the functional areas comprising the Data

Processor follow in Sections 8.2 through 8.4.

8.1 Generation of Plots Using the SC-4020 and Auplot Systems

The SC-4020 is usually operated off-line from a

magnetic tape input. The tape contains a series of commands

to the plotter which are generated by a set of FORTRAN and

assembly language computer programs designed specifically

for this purpose (the SC-4020 and the accompanying software

library are described in Reference i0). The programs enable

the user to develop grid backgrounds, scale data, and print

*The terms "horizontal" and "vertical" refer to the
0

referenced to the conventions established in Reference i0.

BELLCOMM, INC. 8-2

alphanumeric information in addition to plotting and

connecting individual points on a curve. Though quite

extensive, the software package requires the user to

generate plot commands through a large number of compli-

cated calls to specific-task subroutines (e.g. plot

point, draw line, scale data point, etc.). Rather than

use these routines directly, the construction of the

Data Processor was significantly simplified by using the

AUPLOT system as an interface between the programs in the

Data Processor and those in the SC-4020 software library.

Though the AUPLOT system was designed as a

general purpose interface between a user's program and

any software library of a computer-driven plotter, its

current version is implemented to interface specifically

with the SC-4020 software library. The primary advantage

to using AUPLOT is that while it also requires the user

to generate a series of plot commands (subroutine calls),

these commands are far more comprehensive and easier to

implement than those permitted by the SC-4020 library.

AUPLOT translates these comprehensive commands into one

or more specific calls to the SC-4020 library routines.

8.1.i Summary Description of the AUPLOT System

The following is a summary description of the

basic features of the AUPLOT system and how they apply to

the ATS Data Processor. A complete description of the

system and its capabilities is presented in References ii

and 12.

The AUPLOT system is executed in two separate

phases. The AUPLOT subprograms used in the first phase

are called directly by the user's programs during execu-

tion. The AUPLOT subprograms place data tables and

instructions (i.e., plot requests, legend information,

scaling information, etc.) on an intermediate storage file,

IOPLT. Phase 2, which is executed at the completion of

the user's program during the same run, processes the

instructions on file IOPLT in the same order in which they

were placed on the file. Phase 2 generates output file PLOT

using the subprograms from the SC-4020 library. This file,

containing the specific instruction codes to drive the

SC-4020, is stored on magnetic tape to be input to the

plotter at some later time.

BELLCOMM, INC. 8-3

When AUPLOT is used, all communications between

the user's program and the SC-4020 software library are made

via the AUPLOT subprograms. A large number of instructions
are available to the user from the standard AUPLOT instruc-

tion library. Each command is issued as a separate call to

a specific subroutine in Phase 1 which places an instruction

or a data point onto the IOPLT file. When processed during

the execution of Phase 2, each instruction is routed to a

specific subroutine (or group of subroutines) which calls

programs in the SC-4020 library. Therefore, any extensions

to the standard AUPLOT instruction library require the

addition of two subroutines: the first to interface with

the user's program during the execution of Phase 1 and a

corresponding subroutine to interface with the SC-4020

library routines during the execution of Phase 2.

Three routines were added to the standard set of

Phase 1 subprograms to permit the issuance of special labeling

and scaling instructions. Four corresponding subroutines

were added to the set of Phase 2 programs. (Instructions

issued by one of the Phase 1 routines, Subroutine ABLIM, are

processed by one of two subprograms in Phase 2 depending upon

the setting of an indicator flag). Two additional modifi-

cations were made to the Phase 2 routines in order to provide

the capability for shading on the periodic plots (Figures 3.3a

and b). The standard AUPLOT Subroutine PLTXYQ, which is used

to generate the commands for a first quadrant rectangular

graph, was modified to enable it to determine when shading

is to be performed and Subroutine SHADE was added to Phase 2

to generate specific shading instructions.

8.1.2 Collection of Graphical Data

The construction of a graph is a two-step process:

the first step is the collection and storage of all data

points; the second step is the mapping of the data points

into an image space. In the first step, both coordinates

of each data point must be collected. Furthermore, data

points for the independent variable must be monotonically

increasing. AUPLOT facilitates the collecting and storing

of data by building data tables for each variable on a

temporary storage file. The user is thus relieved of having

to provide storage space for the data points in his own

program.

Each data point is stored by a separate call to

Subroutine COLECT. Thus, the statement

CALL COLECT (NAME, VALUE)

enters the number currently stored in the FORTRAN variable

VALUE as the last entry in the table tagged with the

BELLCOMM, INC. 8-4

alphanumeric combination stored in the FORTRAN variable

NAME. Note that all data must be stored as floating point

numbers and that each variable must have a unique name.

Thus, if two dependent variables X and Y are to be plotted

against TIME, four data tables with tags TIME1, X, TIME2,

and Y would be constructed. Mapping instructions would

subsequently be issued to plot TIME1 vs X and TIME2 vs Y.

8.1.3 Plottin@ of Graphical Data

The image space of the SC-4020 is a first quad-

rant grid of 1024-horizontal by 1024-vertical raster points,

with the origin in the lower left corner. The coordinates

of each point must be specified to the plotter in terms of

these raster points. Therefore, each data point must be

appropriately scaled before it can be plotted. The scale

factors are calculated by routines in the SC-4020 library.

After setting aside space for the margins (which can be

used for labeling information), the scale factors for each

direction are calculated using the endpoints of the display

area (in raster points) and the endpoints of the data range.

Once the scale factors are established, the real values of

each data point are scaled just before the point is plotted.

If the value for either variable is outside the range

defined by the endpoints for that variable, the point will

not be plotted.

The relationships discussed above are illustrated

in Figure 8.1. Suppose, for example, one wished to plot

X vs Y in the display area in Figure 8.1. The horizontal

scale factor would be computed so that the lowest value of

X would be placed somewhere along the line X=L and the highest

value along the line X=R. Similarly, the vertical scale

factor would be calculated to place the lower and upper

endpoints of the Y data range along the lines Y=B and Y=T

respectively. All values between the endpoints would be

plotted in the display area.

When two or more plots are to be superimposed on

the same set of axes, the same factor will be used to scale

all of the variables plotted in the same direction. The user

must insure therefore that the data endpoints used to calcu-

late the scale factors are of sufficient range to include all

of the data for all of the variables. Similarly, graphs

requiring more than one frame must be generated on a frame-by-

frame basis. The scale factors must therefore be recalculated

for each frame using the values of the data endpoints for that
frame.

8-5

o

I

I

I.-.

ii

> SIXV (A) "IV31.1.1d3A

o

o

m-

X

I-
Z
O
N

O

Z

z

II IF I# tl

z _

BELLCOMM, INC. 8-6

8.2 Data Processor Executive Control and Initialization

The Data Processor is designed to graphically
display the data produced by the Schedule Generator. The

Data Processor has two sources of input data: punched

cards and a History Tape produced by the Schedule Generator.

The punched cards provide program control and plot descrip-

tion data. The latter includes the alphanumeric names of

the variables to be plotted, the lower (TBEGIN) and upper

(TEND) endpoints of the plot interval in mission elapsed

time, and the scaling and labeling data needed to produce

a finished graph. The History Tape provides the data base

from which the plot data is obtained.

The Data Processor can generate as many plots as

desired in a single run. However, each set of plot descrip-

tions must be input separately. The program reads a set

of data via a NAMELIST, performs the indicated calculations,

and places the appropriate instructions onto the IOPLT file.

The cycle is repeated until the variable LAST is set equal

to one in the set of input data.

The overall flow diagram for the Data Processor*

(Routine ATSPLT) is shown in Figure 8.2. The program is

initialized from the History Tape at the priority level

specified by the value of the variable IPRIOR in the NAMELIST.**

The initialization is identical to that same function in

the Schedule Generator (Section 7.2). Both programs use

Subroutine INITAL to read and distribute the appropriate

data from the History Tape to the proper core locations.

The initialization procedure is omitted if the priority

level specified in the input is the same as the one used

for the previous plot. Under these circumstances, the

appropriate data would already be stored in core.

The program transfers to the appropriate plot

generation area on the basis of the contents of input arrays
VSHADE, VPOINT, and HDEP. The arrays VSHADE and VPOINT

contain the names of variables to be included on a vertical

plot. VSHADE contains the names of the variables whose

occurrences are to be plotted as shaded areas (maximum of

*A description of the job deck to use the Data Processor
is presented in Section 9.3.

**Note that this method of init_a]_ae_n_ _m_e_ eh=

display of the variables' status at any point in the scheduling
process.

8-7

I

I ROUTINE ATSPLT I

1 SETUP ASL I

YES +

I IPRIOR = IPRSAV I

J,
I REWIND HISTORY TAPE i

I CALL SUBROUTINE INITAL TO READ
IN DATA FROM THE HISTORY TAPE

,L
CONVERT TBEGIN & TEND

I FROM DAYS TO MINUTES

N_YES

_o
ERROR EXIT ' I

CALL SUBROUTINE VPLOT TO GEN- /
ERAT E iNSTRUCTIONS AND DATA

POINTS FOR A VERTICAL PLOT

/
CALL SUBROUTINE HFLOT TO GEN-

ERATE INSTRUCTIONS AND DATA

POINTS FOR A HORIZONTAL PLOT

NO

[- P_:.c_.E_oMARKERO,"rILE I

t IOPLT: CALL PLTEND !

I ENO i
FIGURE 8.2 - DATA PROCESSOR OVERALL FLOW DIAGRAM.

BELLCOMM, INC, 8-8

three variables) while VPOINT contains the names of the

variables whose occurrences are to be plotted as single

points (maximum of 15 variables). If at least one of

these arrays contains an entry, the program transfers to

the vertical plot generation area.

Similarly, the first column of array HDEP

contains the names of the variables to be included in

a horizontal graph (maximum of five variables). If there

is at least one entry in the HDEP array, the program

transfers to the horizontal plot generation area. When

control is returned to Routine ATSPLT, the cycle is

repeated unless the variable LAST is equal to one. When

the last plot has been processed, an end marker is placed

on the IOPLT file and the execution is terminated.

8.3 Horizontal Plot Generation Area

The logical flow for the horizontal plot

generation area (Subroutine HPLOT) is shown in Figures

8.3a and b. As the figures show, the flow follows the

basic two-step process for the construction of a graph:

collection and storage of data points followed by the

generation of specific plot instructions to map the data

into an image space.

8.3.1 Data Collection and Stora@e

Before any data points can be collected,

ordinate limits for each variable must be established

so that the graphs of each variable do not overlap. To

establish these values, an arbitrary scale of 0.0 to

i00.0 is used for the Y axis and the ordinate range for

each variable is fixed at i0.0 (15.0 if the number of

variables is less than three). After reserving the lower

ten percent of the ordinate scale for the abscissa scale

marks, the ordinate range between each variable is calcu-

lated from the relation

d = (90-nh)/ (n+l)

where

d = ordinate range between each variable

n = number of variables to be plotted

h = ordinate range for each variable.

8-9

I SUBR°UTINEH LDTI
+

SET'NDEP EQUAL TO THE NUMBER]

OF VARIABLES TO BE PLOTTED I
+

l ESTABLISH ORDINATE VALUESFOR EACH VARIABLE

,k
COLLECT DATA POINTS FOR ALL VARIABLES

ITERATE J FROM 1 TO NDEP

COLLECT DATA POINTS FOR AN

ANALOG RESOURCE BETWEEN

TIMES TBEGIN AND TEND

I HIND = 'TIME' + J - 1TLIMIT = TBEGIN + RPF

+
I

MATCH NAME IN HDEP (J, 11 TO A I

NAME IN THE LTABLE ARRAY I

YES@NO

I MATCH NAME IN HDEP (J, 1) TOA NAME IN THE ORDER ARRAY

COLLECT DATA POINTS FOR A

BINARY RESOURCE BETWEEN

TIMES TBEGIN AND TEND

F

_r

[CONTINUE]

L

ERRO_R EXIT

/

COLLECT DATA POINTS FOR THE /

JOCCURRENCE OF A TASK BETWEEN

TIMES TBEGIN AND TEND

_r

FIGURE B.3a - FLOW DIAGRAM FOR THE HORIZONTAL PLOT GENERATION AREA

PART 1: DATA COLI_ECTION

8-10

q>
i m

i
I

INHIBET X AXIS GRID: CALL PL (DEN ('TIME', 01

INHIBIT Y AXIS GRID: CALL PLTDEN (HDEP {J,1],0)

I ESTABLISH Y AXIS SCALE: CALL PLTtCS {HDEP (J. 1}, 0.O, 100.0) J

+
I I

L....."_

I '................ J
.____

CYCLE FOR EACH FRAME

TL = TU

TU = TU + RPF

+
SUPERIMPOSE THE FOLLOWING GRAPHS

ON THE SAME AXES: CALL PLTSIM il)

I ESTABLISH X AXIS SCALE: CALL PLTICS ('TIME', TL, TU) I

_r
ITERATE J FROM 1 TO NDEP

[......T,_E".... i
÷

WRITE NAME OF Jth VARIABLEIN THE LEFT MARGIN CALL ABTITL

+
PLOT DATA POINTS FOR THE Jth

VARIABLE: CALL QXYIHIND. _EP (J 1])

[.....................................]
i TL AND TU

i

i I RETRIEVE TASK NAME OF THE Ith

I ENTRY FROM THE WA ARRAY

i L]
J--- ---L,- ---J

f
i i

PLOT SCALE MARKS. DATA VALUES. LABELS ALONG THE X AXIS I

ITERATE J FROM 1 TO NDEP

[......T,ME'.... [
+

REMOVE TABLE OF DATA POINTS: CALL CULOUT (HIND)]

+
REMOVE TABLE OF DATA POINTS: CALL CULOUT {HDEP (J, 1I I

+
I(J,,,o I

+
I I

FIGURE 8.3b FLOW DIAGRAM FOR THE HORIZONTAL PLOT G ENE RATION AR EA

PART2: GENERATIONSOF PLOT INSTURCTIONS

BELLCOMM, INC. 8-ii

The lower and upper ordinate limits for each variable are

calculated from the values of h and d and are entered in

successive locations in Arrays LOWER and UPPER respectively.

Thereafter, the kt_h variable in Array HDEP will have the

ordinate limits LOWER(K) and UPPER(K).

The variables named in Array HDEP may be one of

three types: a binary resource (including ephemeris), an

analog resource, or a specific task. The names of the

binary and analog resources must be specified exactly as

they appear in Array LTABLE while the task name must be

specified exactly as it appears in Array ORDER. As Fig-

ure 8.3a shows, the method of collecting data points

depends upon the type of variable.

8.3.1.1 Collection of Data Points for a Binary Variable

The collection of data points for a binary

variable is facilitated by the nature of the data itself,

i.e., that it has only two states, 'off' and 'on'. The

meaning of these states for each type of binary variable

is shown in Table 8.1. On the horizontal plots, the 'off'

state for each variable is plotted at the lower end of its

ordinate range and the 'on' state at the high end of its

range. Thus, in Figure 3.2b, the task LUNCHA occurs between

2.95 and 3.0 days and crewman CREWA is shown committed to

that task over the same length of time.

Each entry in a binary commitment table (Tables

3.1 and 3.2a) is represented graphically by four data points

as shown in Figure 8.4. The coordinates of all four points

must be collected and stored in the sequence in which they

occur. Thus, the sequence of call statements to store the

ith entry in the table would be

Point 1
CALL COLECT (HIND, til)
CALL COLECT (HDEP (K, i) ,LOWER(K))

Point 2
CALL COLECT(HIND, til)
CALL COLECT(HDEP(K,I) ,UPPER(K))

Point 3 CALL

LCALL

COLECT(HIND, ti2)

COLECT (HDEP CK, i) ,UPPER CK))

BELLCOMM, INC. 8-12

Table 8.1

Interpretation of Binary Variable States

Variable Type

Binary Resource Table

OFF

Uncommitted

ON

Committed

Ephemeris Resource Table Unavailable Available

Task Performance Performance

not

Occurring

Performance

Occurring

8-13

I
I

A

i'r"
IJ.I
D.
Q.

>-

A

v

n,-
uJ

0
.J

t"-

X

,.I

,<
I-

I-
Z
uJ

I-

0

>-

<
Z

<

Z

>-
n-
I--
Z

ul
=
I-

I,L
0

Z
0

!--

I.-
Z
w
¢,n
w

w

.J
,<

-r
o.
,<

I

u,.

BELLCOMM, INC. 8-14

Point 4 I

CALL COLECT (HIND, ti2)

CALL COLECT (HDEP (K, i) ,LOWER (K)) .

As described above, the coordinates are stored in

tables tagged with the variable name. During the execution

of Phase 2, the coordinates of the point are retrieved by

pairing successive entries in the appropriate tables. The

coordinates are scaled, the point is plotted, and a line is

drawn between successive points.

As noted above, the graphs are generated frame-by-

frame, with the data range per frame (FORTRAN variable RPF)

being specified by the user. In order to provide continuity

between frames, the real data point corresponding to the

rightmost end of the display area (line X=R in Figure 8.1)

must be collected in the proper sequence along with the

appropriate ordinate value. The abscissa value of the

corresponding data point changes from frame to frame. However,

the value is always known by first initializing the FORTRAN

variable TLIMIT to RPF and then incrementing TLIMIT by RPF

whenever the value of either endpoint in the table entry

exceeds the current value of TLIMIT. When this occurs, the

current value of TLIMIT is collected, along with the appro-

priate ordinate value, just prior to its being incremented.

This cycle of collection and incrementation is repeated as

many times as necessary until the next data point to be
collected has a value of time less than the value of TLIMIT.

The two possibilities are illustrated in Figure 8.5.

In Figure 8.5a, the ith and i+l entries appear on either side

of the current value o--f tlimit, indicating that they must

appear in different frames. Therefore, the coordinates

(tlimi t, LOWER(K)) would be collected just prior to collecting

the data points for the i+l entry. In Figure 8.5b, the ith

entry would bridge two adjacent frames and so the coordina-tes

(tlimi t, UPPER(K)) would be collected between the collection

of points 2 and 3.

As shown in Figure 8.3a, a complete set of data
points is collected for each variable in turn. TLIMIT is

reinitialized to RPF immediately preceding the collection

of each new set of points.

A
v,

uJ
a,.
D,.

8-15

W mm ¥

w

,<

ii
Z
UJ

n-
wl
u.,-___ _ ,,
z

I.-
z

w ,<

.J

A

v
v

W
D.
0.

'_'-""
8

"T --_ =

<
n-
u=

I,-
Z
IJJ

¢J
,<

2
,<

A
v
v

0
iJ

0
I--

I.-
Z

0

e_
z
U.I

,<

,<

M.

0

Z
0

,,,.J
0

I
_ m
z_ =

>. u.

Z

_ A

BELLCOMMo INC. 8-16

8.3.1.2 Collection of Data Points for an Analo@ Resource

The graphical representation of the analog resource

table in Table 3.2b is shown in Figure 8.6. The ith entry

in the table can be represented by two data points-_til, R(i_l)2)

and (til, Ri2) in that order. The coordinates of these points

are collected and stored by the call statements

CALL COLECT (HIND, til)

CALL COLECT (HDEP(K,I) , s(R(i_l) 2))

CALL COLECT (HIND, til)

CALL COLECT (HDEP(K,I) , s(Ri2))

where s is a scale factor that scales the ordinate to a value

between LOWER(K) and UPPER(K). The scale factor is determined

by first scanning all of the entries to be plotted to find RL,

the largest value of Ri2, and then calculating s from the

relation

S _-

UPPER(K) -LOWER (K)

R L

The remaining methodology is the same as for a

binary resource. Thus, the points are processed in Phase 2

by pairing successive entries in the appropriate data tables

to form a data point. The coordinates of the point are

scaled, the point is plotted, and successive points are

connected with a straight line.

Continuity between frames is also maintained in

the same way as for the binary resources. Thus, when t
(i-l) 1

and til appear in different frames the data point (tlimit,

s(R(i_l) 2) is collected and the value of TLIMIT is incremented

by RPF. Again, the cycle of collection and incrementation is

continued until til_tlimit.

I
I
I
i ()
I
I
I
i
I
I
I
I
I
I
I
i _)
I
I
I
I
I

I
I
I
I
I
I
I
I

A

v
v

iJJ

o. n,-

8-17

()

()

I
I
I

A

I
I
I
I
I

I
I
I
I
I
I
Is
I
I
I
I
I
I --A

--.
I
I
I
I
I
I
I
I

A

i
ol

n-

A
v
v

N ec

°--
v

.- _ o=.I

X

.J
_i

I-
I.=
Z
uJ

l-

r_

0

0
.J

Z

Z

tt

0
Z
0
i=.

t=.
z

W

.J

=

I

W

M.

BELLCOMM, INC. 8-18

8.3.1.3 Collection of Data Points to Represent
the Performance of a Task

As noted in Table 8.1, task performances are also

considered binary resources and, as such, are also represented

graphically by four data points as shown in Figure 8.4. In

this case, however, til and ti2 are the beginning and end of

the task performance, i.e., the earliest beginning of a resource
(FORTRAN variable BEGIN) requirement and the latest end time

of a resource requirement (FORTRAN variable END). When task

occurrences are to be plotted, the Descriptor List for the
task is read from the peripheral files and searched to determine

the endpoints relative to the arbitrary task start-time. The

variables BEGIN and END are determined for each task performance

by adding the task start-time to the lower and upper endpoints

determined from the task description. As described in Section

7.1, these start-times are in a list whose address is stored

in the appropriate entry in the ORDER Array. Once determined,

the data points for each performance are collected in the
manner described in Section 8.3.1.1.

8.3.2 Plotting of the Horizontal Graphs

The flow diagram for the portion of Subroutine HPLOT

concerned with plotting the data is shown in Figure 8.3b. As

mentioned above, "plotting" consists of placing a series of

instructions on the IOPLT file and, since the graphs must be

generated frame-by-frame, the entire series of instructions

must be repeated for every frame. The only exceptions are the

instructions for grid backgrounds, labeling information, and

ordinate scaling. They are issued only once for each plot

since they do not change from frame to frame.

The first step in the instruction cycle is to

establish the lower and upper data limits (FORTRAN variables

TL and TU respectively) for the X axis. A call to AUPLOT

Subroutine PLTSIM sets a flag which indicates that subsequent

graphs are to be overlayed. ThereafteD all plot instructions
issued between successive calls to Subroutine PLTSIM will

produce graphs and labels on the same frame.

Plotting instructions are generated by successive
calls to AUPLOT Subroutine QXY. Each call instructs that all

data points between TL and TU for the variables named in the

call statement be plotted on the display area. In addition,

if the Y axis variable is a binary resource, the name of each

task to which the resource is committed is retrieved from the

BELLCOMM. INC. 8-19

WA Array and is printed in the box representing that commit-

ment. Before proceeding to the next frame, the scale marks,

accompanying data values, and X axis labels are printed at
the bottom of the frame. The scale marks are inserted at the

endpoints of the display area and at seven equally spaced

points in between.

When instructions for all of the frames have been

completed, a series of instructions is issued to free each

of the variable names for reuse. The statement

CALL CULOUT ('NAME _)

causes the data tables for the variable 'NAME' to be erased

from storage during the execution of Phase 2. These instruc-

tions will be processed in Phase 2 after the plots have been

created and therefore will not affect their generation. New

data tables with the same tag names can be placed on the IOPLT

file subsequent to these instructions with no possibility of

ambiguities with previous data.

8.4 Vertical Plot Generation Area

The vertical plots (Figure 3.3b) are used to

highlight cyclic variations in the data as well as the

interrelationships between different variables. Only binary

variables, as defined by Table 8.1, may be plotted on a

vertical plot; analog variables will be rejected.

Comparison of Figures 3.2b and 3.3b shows several

significant differences between the horizontal and vertical

plot formats. On the horizontal plots, the data for each

variable is plotted over a different ordinate range so that

the graphs never overlap. In contrast, the ordinate range

on the vertical plots is the same for all variables over a

given time period thus guaranteeing that the graphs of the

different variables will overlap and so emphasize their

interrelations. In order to differentiate between the differ-

ent variables, each is plotted with a unique symbol or

character. A variable may either be plotted as a box or

a point. The box represents the duration of the 'on' state _

and is coded by shading for identification. A variable may

also be plotted as a point. The point represents the

BELLCOMM INC 8-20

mid-point of the 'on' state for that variable.* As noted

above, the user designates via the input data how each

variable is to be plotted. The occurrence of those vari-

ables named in Array VSHADE will appear as shaded boxes

while the occurrence of those designated in Array VPOINT

will appear as points. The program selects unique symbols

for each variable and prints out a legend (Figure 3.3a)

defining these symbols before each plot.

Since the vertical plots use approximately the

same ordinate range as one dependent variable on a hori-

zontal plot, a large portion of the display area would

remain blank when the graphs of the variables _ uv_

layed. This blank space can be utilized however, by

plotting successive time intervals one under the other.

This format not only utilizes the entire display area

(which reduces the number of frames required for the plots),

but also increases the effectiveness of the display.

Finally, in order to improve the continuity between frames,

the axes for the independent variable and dependent vari-

ables are reversed, i.e., time is plotted along the ordinate

(Y axis) and the variable states along the abscissa (X axis).

The resulting vertical graph in Figure 3.3b

shows intervals of equal duration plotted along the Y axis.

The value of time represented by the lower endpoint of each

interval is shown adjacent to that endpoint. Note that the

abscissa values representing the two states 'off' and 'on'

are constant for any one interval but differ for different

intervals, thus preventing the graphs of different variables

from overlapping.

The flow diagrams for the vertical plot generation

area (Subroutine VPLOT) are shown in Figures 8. a, b, and c.

The logical flow follows the basic two-step plot construction

process used for the horizontal plot area and so the flow

diagrams for the two areas are quite similar.

8.4.1 Data Collection and Storage

The flow diagram for the collection and storage

of data for vertical plots is shown in Figure 8.7a. Before

any data points can be collected, the abscissa limits for

each time interval on the frame must be established so that

*For task occurrences, .h_ _. _n_ng_ 9h_ _tart-

time of the task.

L_ ______

f
I NS"ADE=J-1I

r

f
f NOEP=,-1i

8-21

[SUBROUTINE VPLOT 1

+
ESTABLISH ABSCISSA LIMITS FOR EACH I

T ME INTERVAL ON A FRAME I
.... ._IIP__ __.

I ITERATE J FROM 1 TO 3

,I
I I VDEPIJ, 1)=VSHADE(J) I

L_____

+
I NSHADE=JI

I J=_+' 1

I _=o]

3_.
!

I ITERATE L FROM J TO J + 15

I
I [K=K+; I

'1 YES_
I
I _NO

JVDEF{L,1)=VPO'NT(K'II VDEP (L, 2) = K

L_

I N°EP:L I

F CALL SUBROUTINE LEGEND TO I
COLLECT POINTS AND GENERATE

PLOT INSTRUCTIONS FOR THE LEGEND

COLLECT DATA POINTS FOR ALL VARIABLES

ITERATE J FROM 1 TO NDEP

I HIND ='TIME' + J-1

I TLIMIT = TBEGIN + RPL

,f
l MATCH NAMES IN VDEP (J, 1) TO]

A NAME IN THE LTABLE ARRAY I

YES _NO

I'----"C_ NALOG VARIABLE:'_"_--I I A NAME IN THE ORDER ARRAY I

I

YES • I _YES

{VDEP (J 2) = -11 I _IF ,=o:_ J I ICOLLECTDATA POINTS FOR THE OCCURRENCE I

| ,..L IOF A TASK BETWEEN TIMES TBEGIN AND TENDI

L _ _ ._J

, [VDEP<J2,=1] NO_
-r

ERROR EXIT

FIGURE 8.7a - FLOW DIAGRAM FOR THE VERTICAL PLOT GENERATION AREA

PART 1: DATA COLLECTION

8-22

,i,
ISTOBEGRAFHTITLE_CALL_LTITLIT'TLE'I

,i,

INHIBIT Y AXIS GRID: CALL PLTDEN (VIND, 0l IINHIBIT X AXIS GRID: CALL PLTDEN (VDEP (1,1), 0)

IESTABL'SHYAXIS8CALE:CALLF_TICS'VOEFI,".O0,'_O'I
+

LINE = O ITU = TBEGIN

+
i8ETPHASE2S"AO'NGFLAGSI

NO

IOUMFALLCOLLEOTEODATA_'NTSI

Q

UN,T=I.OYUNITS = 'MIN'

YES

YUNITS = 'HRS'

YES
' f

UNITS = 1440,0]

IYUNITS = 'DAYS'

ANDGRIDMARKS FOB THE Y AXIS

BEGIN A NEW FRAME AND SUPERIMPOSE THE FOLLOWING [GRAPHS ON THE SAME SET OF AXES: CALL PLTSIM (1)

I ITU = TU + RPL

_ YES

DEFINE Y AXIS SCALE FACTORS FOR

LIMITS TL AND TU: CALL ABLIM

IL'NE'L'NE+'I

YES II,

I LINE = I I

I _RICGIN A NEW FRAME &N_ SUP_n MPGSE THE FOLLOWING 1

I

I GRAPHS ON THE SAME SET OF AXES: CALL PLTSIM I1) I

FIGURE 8.7b - FLOW DIAGRAM FOR TIlE VERTICAL PLOT GENERATION AREA

PART 2: GENERATION OF PLOT INSTRUCTIONS

8-23

ITERATEJ FROM 1 TO NDEP

I_

YES

IVNDTMEI....
+

I

j ESTABL,BHPLOTSYMBOLC..... CBAB,VDEF,J2,,I
i

i t

VARIABLE: CALL OXY (VDEP (J, 1)_, VIND)

YES

IN THE LEFTMOST MARGIN

ILABELYAX......BNT.......OST......I
4,

i LARSLXAX3S_THEBOTTGMMARONI....

WRITE VALUE OF LOWER TIME INTERVAL

ENDPOINT IN THE BOTTOM MARGIN

¢ YES

ITERATE J FROM 1 TO NDEP

[...... TIME'+ J- 1 I

+
]BEMO......EOFO....O,NT3:_ALLCDLODT,,]....

+
f i

I REMOVE TABLE OF DATA POINTS: CALL CULOUT (VDEP (J, 1) 1]
I I

VDEP (J, 21 = 0

7

I
ITERATE J FROM 1 TO 3

I
' I]

I
ITERATE J FROM 1 TO 15

I
' iI I VFO,NT,_I=O

l I
FIGURE 8_7c - FLOW DIAGRAM FOR THE VERTICAL PLOT GENERATION AREA

PART 2: GENERATION OF PLOT INSTUCTIONS (CONTINUED)

BELLCOMM, INC. 8-24

they do not overlap. The number of time intervals (or

lines) to be plotted on one frame is specified in the

NAMELIST input. Using an arbitrary abscissa scale of 0.0

to i00.0, the spacing between each interval is defined as

w = 100/L

and the abscissa range for each interval is defined as

h = w/3,

where

L = number of lines per frame (FORTRAN

variable LPF)

w = abscissa spacing between successive

time intervals (FORTRAN variable IWIDTH)

h = abscissa range for each time interval

(FORTRAN variable HEIGHT).

The lower and upper abscissa scale limits for each time

interval are calculated from the values of h and w and are

entered in columns one and two respectively of Array HLIMIT.

Thereafter, all data for the ith time interval (FORTRAN

variable LINE) on every frame will be plotted between the

limits HLIMIT (LINE,l) and HLIMIT (LINE,2).

As with the horizontal plots, any binary resources

named in Arrays VSHADE and VPOINT must be specified exactly

as they appear in Array LTABLE while each task named in the

input arrays must be specified exactly as it appears in the

ORDER Array. As shown in Figure 8.7a, the names in both

arrays are transferred to sequential locations in the first

column of Array VDEP as they are counted. The input

sequence number is entered in the corresponding second

column for those entries that appear in Array VPOINT. The

method of data collection and plotting for each variable

is determined by the contents of this second column. A zero

entry specifies that the data is to be collected and plotted

as a box while a non-zero entry stipulates that the data is

to be collected and plotted as a point.

BELLCOMM, INC 8-25

8.4.1.i Collection of Data Points to Represent

Binary Variables as Shaded Boxes

When a binary variable (i.e., binary resource

table, binary ephemeris table, or the occurrence of a task)

is to be plotted as a shaded box (Figure 3.3), the 'on' state

for the variable is represented by four data points as shown

in Figure 8.8. This representation is identical to the one

shown in Figure 8.4 for the horizontal plots except for the

orientation of the axes. In this case, til and ti2 again

represent the endpoints of the 'on' state; however, the

'off' and 'on' states are now represented by the two abscissa

values HLIMIT(LINE,2) and HLIMIT(LINE,I) respectively.

The sequence of call statements to collect these data points
is the same as those shown above in Section 8.3.1.1.

Continuity is maintained between successive time

intervals in the same manner as it is maintained between

successive frames for the horizontal plots. The user

specifies the range of the time interval (FORTRAN variable

RPL) . For each variable, TLIMIT is initialized to RPL and

is then incremented by RPL whenever the value of either

endpoint, til or ti2, exceeds the current value of TLIMIT.

The value of LINE, the time interval counter, is also incremented

but its value is reset to one whenever it exceeds the value

of LPF, the number of intervals to be plotted on one frame.

In addition, when it is the value of ti2 that exceeds the

value of TLIMIT, the value of TLIMIT is collected along with

the appropriate abscissa, HLIMIT(LINE,I), thus providing

continuity of data between successive time intervals. Note

that this method of maintaining continuity permits the user

two degrees of control over the output graph: the length

of the time interval (RPL) and the number of intervals to be

placed on one frame (LPF).

The meaning of the 'on' state for the different

types of variables is £he same as for the horizontal plots

(Table 8.1). The endpoints of the 'on' state (til and ti2

in Figure 8.8) for a binary resource or binary ephemeris

table are the pair of points comprising one entry in the

table. For an occurrence of a task, the endpoints represent

the beginning and end of a performance. The method of

determining these endpoints for a task occurrence is

described in Section 8.3.1.3.

8-26

®

Z

,..I
v

I-

.,.I
q-

A

¢%1

Z

,..I

I-

:E
.J
"I-

>.

o
,.J
o.
,.J

r.1

ILl

Q_
o
IJ.

I.IJ
I,-

I--

IJ.I
q-
I-
I.I.
o
Z
0

I-

I-.
Z
ILl

IJ.I

O.
I.ZJ
n-

..I

a.

I
O0
o5
MJ
n-

IJ.

X Iz

BELLCOMM, INC 8-27

8.4.1.2 Collection of Data Points to Represent

Binary Variables as Points

As noted above, when the 'on' state of a binary

resource or ephemeris variable is plotted as a point, that

point represents the midpoint of the 'on' state and is

calculated from the relation

tpoin t = til+(ti2 -til)/2.0 .

For a task occurrence, however, the point represents the

actual start-time of the task. In either case, the state

is represented by a single data point (tpoint,X) where

X = HLIMIT(LINE,2) -HEIGHT/2.0 .

8.4.2 Plotting of Vertical Graphs

The flow diagram for the portion of Subroutine

VPLOT concerned with placing the plot instructions on the

IOPLT file is shown in Figure 8.7b. Like the horizontal

plots, the vertical plots must be generated frame-by-frame

and therefore the entire set of plot instructions must be

repeated for every frame. Again, the exceptions are the

calculations and instructions for grid backgrounds, labeling

information, and scaling which do not change and therefore

need to be specified only once.

The scale marks and accompanying units that are

inserted along the Y axis are the same for each frame. Hence,

though instructions must be issued once each frame to write

them on the frame, the calculations to select the proper scale

are performed only once before the plot instruction cycle

begins. The program selects scale marks at the endpoints

of the display area and at regular intervals in between.

The scale units (i.e., days, hours, or minutes) are selected

on the basis of the size of RPL. The program then selects

the maximum number of grid intervals (and hence the number

of interim scale marks) for which the remainder of

r L

un

BELLCOMM INC 8-28

where

rL - range per line (FORTRAN variable RPL)

u - scale units

n- number of intervals

is zero above two decimal places. A maximum of six intervals

is permitted and n will be set to six if this requirement

cannot be met.

The instruction cycle for the vertical plots is

very similar to its horizontal counterpart (Figure 8.3b).

Plotting instructions are again generated by successive calls

to Subroutine QXY which specify that all data points between

the lower and upper data limits (TL and TU respectively) are

plotted on the display area. In order to produce the desired

format, these factors must be redefined for each time interval

rather than for each frame. Hence, in the basic instruction

cycle, TL and TU are incremented by RPL, the scaling factors

are redefined, and plot instructions are issued for each
variable.

The value of the time interval counter LINE is

incremented by one whenever TL and TU are redefined, and it

is reset to one whenever its value exceeds the designated

number of lines per frame (LPF). Labeling instructions for

both the horizontal and vertical axes are issued whenever

LINE is equal to one.

Each call to Subroutine QXY results in a call to

Subroutine PLTXYQ in Phase 2 of AUPLOT. The subroutine will

either plot the data as individual points or as a continuous

curve depending upon the value of Flag IPCHAR which in turn

is set by the call to Subroutine PLCHAR in Phase i. If the

value of IPCHAR is zero, the data will be plotted as a

continuous curve. If the value of the flag is equal to

I(I>0), the data is plotted as individual points using the

Ith symbol in a table of symbols set aside for that purpose.

As noted above, Subroutine PLTXYQ was modified to

permit the generation of shading instructions. However, a

number of variables used in Subroutine VPLOT are needed to

generate these instructions. The value of the required

variables are transferred to Phase 2 by separate calls to

Subroutine AUFLAG. The statement

V_U_

BELLCOMM INC 8-29

places the current value of FORTRAN variable VALUE on the

IOPLT file. When the instruction is read during the execu-

tion of Phase 2, this value will be placed in the Ith

location of Array IEXTRA. The array contains 15 loc--ations

which are not used in the standard version of AUPLOT and

hence can be used for special purposes through the Phase 2

COMMON structure. The values of all Phase 1 variables

required by Subroutine PLTXYQ are input to the subroutine
in this manner.

BELLCOMM, INC.

9.0 The ATS Job Decks

Each of the ATS programs is designed to run in

the batch mode on the UNIVAC 1108 computer operating under

the EXEC 8 multi-processing system. The user describes a

run via a job deck, i.e., a single deck of punched cards

containing all of the system instructions and input data

needed to use a particular program. Sections 9.1 - 9.3

describe the job deck for each of the ATS programs. The

descriptions assume a familiarity with the UNIVAC 1108

control statements and the NAMELIST input/output package.

A complete description of the control statements can be

found in Reference 13 and a description of the NAMELIST

software package can be found in Reference 14.

9.1 Job Deck for the Data Bank Generator

A sample job deck for the ATS Data Bank Generator

is shown in Table 9.1. Four files must be assigned for the

duration of the run. The first is the program file

ATS,SCHEDULER which is stored on FASTRAND and contains the

Data Bank Generator absolute element BNKMAP. The file

containing the Data Bank itself is designated by the user.

It may be stored either on FASTRAND (the case shown) or on

magnetic tape. In either case the file must be assigned to

logical unit 2. Finally, two auxiliary storage files, TASKANNOT

and TASKDESCR, are used to store the task annotation and

description lists. These files must be stored on fast drum or

FASTRAND to permit random access (Section 5.3.2) and must

be assigned to logical units 1 and 3 respectively. Note that

all files shown in Table 9.1 have the qualifier ATS as speci-

fied in the third field of the RUN card.

Only two variables are included in the NAMELIST

statement, flags NEW and NOLIST. As shown in Figure 6.2,

the value of NEW indicates whether an existing data bank is

to be modified (NEW=0) or a completely new bank is to be

created (NEW=l). Similarly, the value of NOLIST indicates

whether the tasks in the bank are to be printed out as they

are stored (NOLIST=0) or if that printing is to be suppressed

(NOLIST=I). Since the values of both variables are initialized

to zero at the start of the execution, they need only appear

in the data deck if they are to be set equal to i. The task

description cards are placed after the NAMELIST data subject

to the sequence rules discussed in Section 4.5.

BELLCOMM, INC. 9-2

Table 9.1

Job Deck for the ATS Data Bank Generator

@RUN

@HDG

@ASG, T

@USE

@ASG, T

@USE

@ASG, A

@USE

@XQT

$INPUT

SEND

LAST

@FIN

ABBJOB, ABB, ATS, 30, 200

JOB DECK FOR ATS DATA BANK GENERATOR

TASKANNOT,F

I,TASKANNOT

TSKDESCR,F

3,TASKDESCR

DATABANK

2,DATABANK

ATS,SCHEDULER.BNKMAP

[NAMELIST Variables]

[Task Description Cards]

BELLCOMM, INC. 9-3

9.2 Job Deck for the Schedule Generator

A sample job deck for the ATS Schedule Generator
is shown in Table 9.2. The structure of the deck is the

same as that used for the Data Bank Generator. In this

case however, the number of files assigned for the duration

of the run depends upon the program optlons desired by the

user. A minimum of three files must be assigned: the

program file ATS,SCHEDULER containing the Schedule Generator

absolute element SCDMAP and the two drum files, TASK_NOT

and TASKDESCR, which will be used during the run to store the

task Annotation and Descriptor Lists.

Each of the four remaining files need be assigned

only if the option associated with that file is desired.

If a data bank is to be used, the file containing the bank

is assigned to logical unit 2. Similarly, if ephemeris

information is to be input, the file containing that

information is assigned to logical unit 4, or if the

Schedule Generator is to be initialized from a History Tape,

that tape is assigned to logical unit 8. Finally if a new

History Tape is to be made, the output tape is assigned to

logical unit 9. Although all of these optional files are

shown as tape files in Table 9.2, any or all may be assigned

as FASTRAND files.

The N_4ELIST statement for the Schedule Generator

contains the names of the 14 variables defined in Table 9.3.

A subset of these variables must be specified for each run

but the variables included in that subset depend upon the

method of initialization and the program options to be exer-

cised. Table 9.4 illustrates all of the data options available

when a completely new schedule is to be generated while

Table 9.5 illustrates the available options when a partial

schedule is to be completed. As mentioned above, a variable

need only be specified in an input data deck when the desired

value is something other than zero.

9.2.1 Input Data to Generate a Completely New Schedule

When a completely new schedule is to be generated,

the specification of all of the variables shown in Table 9.4

is optional with the exception of the variable TOTIME. In

two cases, however, the ephemeris data option and the Data

Bank option, the user must select an option from a subgroup

of alternatives.

BELLCOMM. INC. 9-4

Table 9.2

Job Deck for the ATS Schedule Generator

@RUN

@HDG

@ASG,A SCHEDULER

@ASG,T TASKANNOT.,F

@USE I,TASKANNOT

@ASG,T TASKDESCR.,F

@USE 3,TASKDESCR

@ASG,TM 2,T,xxxx

@ASG,TM

@ASG,TM

@ASG,TM

@XQT

$INPUT

SEND

LAST

@FIN

ATSJOB, ABB, ATS, 30, 200

JOB DECK FOR THE ATS SCHEDULE GENERATOR

(assign Data Bank tape and relate

it to logical unit 2)*

4,T,xxxx (assign ephemeris tape and relate

it to logical unit 4)*

8,T,xxxx (assign input History Tape and

relate it to logical unit 8)*

9,T,xxxxR (assign output History Tape and

relate it to logical unit 9)*

ATS,SCHEDULER.SCDMAP

[NAMELIST Variables]

[Task Description Cards]

*Note: xxxx denotes the reel number of the particular

magnetic tape.

Table 9.3

Variables Included in the Schedule Generator NAMELIST Statement

FORTRAN

Variable Dimension Data Format Definition

GDATE (3) (i) Hollerith Gregorian date of launch as recorded on

(2) Integer the ephemeris data file.*

(3) Integer

IEPHEM (1) Integer

IGNORE (200) Hollerith

INCLUD (200) Hollerith

IPRINT (1) Integer

IPRIOR (1) Integer

ITABLE (1) Integer

ITAPE (i) Integer

NCRENT (i) Integer

NEWCOM (3,20)

NEWCRW (2,5)

NEWDAT (3,10)

TIMEL (i)

TOTIME (1)

(1,X) Hollerith

(2,X) Integer

(3,X) Integer

Hollerith

(l,x) Hollerith

(2,X) Floating Point

(3,X) Floating Point

Floating Point

Floating Point

Ephemeris data flag, 0: included, i: not

included.

Array containing the names of the tasks

whose descriptions are not to be trans-

ferred from the Permanen--_--Data Bank.

Array containing the names of the tasks

whose descriptions are to be obtained

from the Permanent Data Bank.

Print Frequency Flag.

Priority Level Indicator.

Start-time window table flag, 0:NO, 1:YES.

History Tape output flag, 0:YES, 1:NO.

Maximum number of entries in each crew

commitment table.

Array containing the name, type, and

maximum # of permissible entries of every

required resource commitment table except

those for crewmen (maximum of 17).

Array containing the name and associated

skill of each crewman (maximum of 5).

Array containing the name, initial

quantity, and maximum usage rate of each

consumable (maximum of 10).

KSC time of launch as recorded on the

ephemeris data file (hours)

Total mission time (days).

*The date is entered as a three-tuple. The first element contains one of the standard three

letter codes for the month, the second element contains a one or two digit integer specifying the

day of the month, and the third element contains a four digit integer specifying the year. An

example is shown in Table 9.4.

9-6

o_

_J
,-I
.o
r_

,-I

L_
r_

Z

u.-i
o

o
-,-1

_D

4-1

Oi

o

o
-,-I

-,-I

p.

I-t

o

i,.o

o
-,-I

"O

o
-_1

-,-'1

1.1-I
-,-I

(I)

o
-,-I

O

.'N
,--t

II

H

o

A

o

I.k.l
-,-I
c_
_J

il

_d
(9

..cl

o

,--I
,--I
-,-I

-,-I

II

F_

I-t

p.
r_

O

©-,-I

_-,-t

_ 4J -,--I
o.,_ r_

m _

,---t _

_ -,-.t,-t

p_

,--t

II

o ,_
cl

_g
u'l

,--4
II

F.-t

.d

©

,--t
,--t
-,-I

m r_

r_ 4_
4

"'_ Cl "_

-,-I _ m

_. _ _ .,-i

I_ o
(D_ ,-Iu

,.Q
u,-I 151 u,-i
o_ o,_

_-,-I

o o o

•,-_"o .,-t _1

o

c;

E-t

O E_

-,-I

v E_

_o _
•

0

r_

4_

r_

o
.1_ p.,

(D

(1)

N O

O

,-I

,.cl

o,_
,-I

o

•,--I'lJ ._£

lq -,.-t

D

ul

m D _

II II II

_ O _ O
U O _ O

L9 L0
I...-I I-I I-t

-,-t

.._

o

,D

,.-I
.,-I

r_

r_

Z:

o _

_d

(1)

ill

(1)
,.el

r_

o

o

o

I.o
1"

9-7

A

0
0

v

O_

0

o

r_

o
q4

(1}
,-t

cJ

-,..t

0
0

14

0
m

J

0

D

II

0
0

Z

0

0

0

0
D

0

0

II

0

,-t 0

o_
4-1.,-I

X

0

• ,-t •

n_ .,-I

OC4J

0
m o

J
o

II

[.-t
Z

r..)
Z

°0
0 •

0
",0

O0
°_

0
0 "
O0

0

0
,_ _0

o

0
0-_

t_

4-} 0

o

•,-I •

0

O_
m C
• .,--t

u,-I 0 m
0 _ ,--t

,-t _4 0

II

Z
I-t

I-t

I
4.1

0
0-_

-,-I cl
•,o .,-I

_0

0
.CO
04_

C.,-I
.,-I

03
.CO
u_,t/

C
0._

0

.,-I

II

<

H

9-8

l.n

o'_

,.Q

¢}
,-I

©
,.c:
c)

e.-i

..l-J

,-I

o
o
4-I

o
-,-I

.,-I
qq
-,-I
D

r.Q
H

-I
©

¢)
--I

:>

,--I

o
,-I

:>
I-.4
,'4
o

p

o

II

o

H

_)

-,-I

1,4
0

-,-I

4
4_ r_
P_

-,--t

r_

E-t

-,4

ill

-,-t

D

o

o

¢1

4.1

o

.o

° H
4-1 H

4-1

"o
_>
4-1 ©

-,--I

-,-I

,.O o
.,-I

ol,4

¢_ 1.4

ml o
u,-i

,.Q ¢)

q-I
o

o ¢_

.._
ml o
l,.4._

,el m
-,-I

_m

O
t_ ,¢I

• ,-I -,-I

o

I.Q

,--I
,.Q

,-I

H

¢Q
,<

I-I

(].)

-,q

I
..i_

r121-,--I

m

BELLCOMM, INC. 9-9

9.2.1.i Ephemeris Data Option

If no ephemeris data is to be input, the flag

IEPHEM is set equal to one. Conversely, if a file containing

ephemeris data is to be input, the variables GDATE and TIMEL

must be specified exactly as they appear on that file. If

either or both of these variables do not match their counter-

parts on the ephemeris data file, the run will terminate in

an error message (Appendix A - Section A.2.8.1).

9.2.1.2 Data Bank Option

Four data bank options are provided to minimize

the number of individual task names that have to be specified

in the data deck. Normally, array INCLUD contains the names

of all of the tasks whose descriptions are to be copied from

the permanent Data Bank. If all of the descriptions in the

bank are to be used, the user may set INCLUD equal to 'ALL'

rather than specify each task name separately. If all but a

few tasks are to be used, the user may alternately specify

the names of those tasks to be omitted in the IGNORE array.

If no Data Bank is to be used, the variable IGNORE is set

equal to 'ALL'.

9.2.1.3 History Tape Option

Only one option is available. If no output history

tape is to be generated, the variable ITAPE is set equal to
one.

9.2.1.4 Specification of Resource Commitment Tables

As noted in Section 5.1, the characteristics for

each resource commitment table must be supplied as input
data. Three characteristics of each resource commitment

table must be supplied: the name, the maximum number of

entries in the table, and the number of columns in the table

(two for analog resources, three for binary resources).

The characteristics for each table are entered as successive

three-tuples* in the one-dimensional array NEWCOM. Thus,

for the example shown in Table 9.4, a resource commitment

table named POWER is defined as an analog table (two columns)
with a maximum of 150 entries.

*An n-tuple is an ordered set of n elements.

BELLCOMM. INC. 9-10

All resource commitment tables except those for

crewmen are specified through array NEWCOM.* The two char-

acteristics of each crewman, name and skill, are entered as

successive two-tuples in the one-dimensional array NEWCRW.

For convenience, the program already contains the names of

three crewmen: CREWA, CREWB, and CREWC. The corresponding
resource commitment tables have each been allotted 400

entries. If additional crewmen are required, their names

must be specified in array NEWCRW along with a designated

skill (one skill per crewman). If no specific skill is to

be assigned to the crewman, the word 'NONE' should be entered.

The three crewmen already designated (CREWA, CREWB, CREWC)

have no specific skills assigned. To assign a skill to one

of these crewmen, the name and skill are entered in array

NEWCRW as if it were a new entry. Array NEWCRW will accept

a maximum of five two-tuples.

In the example shown in Table 9.4, Array NEWCRW

will have two entries. First, a new crewman named CREWD

is defined without a specific skill. In addition, crewman

CREWC, already defined by the program, is assigned the skill

DOCTOR. The resource commitment table for each crewman is

allocated a maximum of 400 entries by the program. If this

is unsatisfactory, the user may assign a new maximum via

variable NCRENT.

The user is cautioned on two points. The first is
to make realistic estimates of the maximum number of entries

for each resource commitment table. As explained in Section

5.1, these maximums are used to allocate space in the WA Array.

The number of locations allocated to each table in the array

is the product of the maximum number of entries (the actual

number rather than the estimated maximum is used for ephemeris

resource tables) and the number of columns in the table. If

the total number of locations (i.e., the sum of the products)

required exceeds the dimension of the WA Array, the run will

be terminated with an error message (Appendix A - Section

A.2.8.2). The WA Array is currently dimensioned to 12,000
locations.

The second point is that Array LTABLE, which acts

as the table of contents to the WA Array (Section 5.1) is

currently dimensioned to 20. Therefore, no more than 20

commitment tables (resource and ephemeris) may be specified.

*Ephemeris resource tables are defined directly from

the ephemeris data tape and therefore need not be specified

in the input data deck.

BELLCOMM, INC. 9-11

9.2.1.5 Specification of Consumables Limits

As noted in Section 7.2, the maximum quantities

and/or usage rates for each consumable must be supplied as

input data. Three characteristics, name, initial quantity

available, and maximum usage rate, for each table are entered

as successive three-tuples in the one-dimensional Array NEWDAT.

If either of the qualitative characteristics do not apply

to the particular consumable, a value of zero should be

entered. The example in Table 9.4 shows that two consumables,

named OXYGEN and POWER, are entered into Array NEWDAT. OXYGEN

has an initial quantity of 5000.0 available and no specified

usage rate. The consumable POWER has no specified quantity

available but a maximum usage rate of 4000.0. Note that no

units are specified for either the amount available or the usage

rate. To obtain meaningful results, the user must insure

that the quantities specified for the initial amount

available are consistent with the quantities specified for

that consumable on AMOUNT cards. Similarly, the user must

also insure that the maximum usage rate specified in NEWDAT

is consistent with the usage rates specified in the sixth
field on the Resource Cards.

9.2.1.6 Print Options

Two print options are available. The Print

Frequency Flag IPRINT is used to control the printing of

intermediate results. When the flag is set equal to k, the

program will print out the contents of all resource commit-

ment tables every k priority levels. If IPRINT is not

specified, only the final results will be printed.

The variable ITABLE is used to control the printing

of a table that illustrates the calculation of start-time

windows for each task. This option is usually used only for

detailed analysis of particular problems since it results in

a large volume of printout.

9.2.2 Input Data to Complete a Partial Schedule

Comparison of Tables 9.4 and 9.5 shows that the

available input options are significantly narrowed when a

partial schedule is to be completed. The variables for the

two print options (IPRINT and ITABLE) as well as the option

for an output History Tape are the same as described in

Section 9.2.1. In addition, the value for the priority

BELLCOMM, INC. 9-12

level indicator IPRIOR must be specified. When IPRIOR is

set equal to k, the schedule will be initialized at the end

of the kth priority level (Section 7.2).

9.2.3 Sample Job Decks

Job decks to illustrate each of the basic options

are shown in Tables 9.6 and 9.7. Table 9.6 illustrates a

job deck to generate a new schedule. A Data Bank stored on

magnetic tape #i000 is assigned to logical unit 2 while an

ephemeris data file placed on tape #ii00 is assigned to

logical unit 4. An input History Tape is to be generated

and stored on tape #1200.

The ephemeris and data bank options in the data

deck are consistent with the file assignments. In addition,
two resource commitment tables are defined. The first is

for an analog resource named POWER which may contain up to

175 entries while the second is for a binary resource named

SCILOK. The latter may contain a maximum of 200 entries.

The maximum usage rate for the analog resource POWER is

defined as 4000.0. The deck of task description cards

(Section 4.5) following the input NAMELIST contains edits

to task descriptions for Task SLEEP and defines a new task

named TASKX. Note that the description of TASKX will be

stored on the output History Tape as well as on the auxiliary

drum files TASKANNOT and TASKDESCR, thus making that task

description available to any subsequent runs using that History

Tape (tape #1200) as an input.

Table 9.7 illustrates a job deck that could be

used to complete a partial schedule. Tape #1200, the

History Tape generated from the run described in Table 9.6

is used as the input History Tape for this run and is there-

fore assigned to logical unit 8. The data deck indicates

that the schedule is to be initialized at the end of priority

level 12, e.g., after all of the entries at the 12th priority

level have been made. In this case, the deck of task

description cards following the NAMELIST input consists of

only one edit. The card redefines the priority of task

TASKX so that it will be considered at the 13th priority

level rather than the 20th as it was in the previous schedule.

9.3 Job Deck for the Data Processor

The general structure of the job deck for the ATS

Data Processor is shown in Table 9.8. All four files shown

in the table must be assigned for every run. The program
file ATS,PROCESSOR contains the absolute elements PLTMAP and

BELLCOMM, INC. 9-13

Table 9.6

Sample Job Deck for the Generation of a New Schedule

@RUN

@HDG

@ASG,A

@ASG,T

@USE

@ASG,T

@USE

@ASG,TM

@ASG,TM

@ASG,TM

@XQT

$INPUT

GDATE =

TIMEL =

IGNORE=

NEWCOM=

NEWDAT=

IPRINT=

SEND

SLEEP/COMMNT,

SLEEP/TIME,

TASKX/TITLE,

TASKX/COMMNT,

TASKX/COMMNT,

TASKX/PRI,

TASKX/OBJEC,

TASKX/RES,

LAST

@FIN

ABBNEW, ABB, ATS, 30, 200

JOB DECK TO GENERATE A NEW SCHEDULE

SCHEDULER

m_ _ _ _m F

I,TASKANNOT

TASKDESCR.,F

3,TASKDESCR

2,T,I000

4,T,I100

9,T,1200R

ATS*SCHEDULER'SCDMAP

'JUL', 16, 1972,

14.583

'M093A',

'POWER' 175 2 'SCILOK, 200, 3
f , I

'POWER', 0.0, 4000.0,

5,

4, TO 00:10:00 MISSION ELAPSED TIME

00:i0:00

1

1

2

2O

I,I

CREWA,

Task TASKX

THIS TASK REQUIRES THE SERVICES OF

CREWMAN CREWA FOR 30 MINUTES.

00:00:00, 00:00:30

BELLCOMM, INC. 9-14

Table 9.7

Sample Job Deck to Complete a Partial Schedule

@RUN

@HDG

@ASG,A

c T

@USE

@ASG,T

@USE

@ASG,TM

@XQT

$INPUT

IPRIOR=I2,

ITAPE=I,

IPRINT=I,

SEND

TASKX/PRI,

LAST

@FIN

ABBPAR, ABB, ATS, 30, 200

JOB DECK TO COMPLETE A PARTIAL SCHEDULE

ATS*SCHEDULER

TASKANNOT.,F

I,TASKANNOT

TASKDESCR.,F

3,TASKDESCR

8,T,1200

ATS*SCHEDULER.SCDMAP

13

BELLCOMM, INC. 9-15

Table 9.8

Structure of the Job Deck for the ATS Data Processor

@RUN

@HDG

@ASG,A

@ASG,T

@USE

@ASG,T

@USE

@ASG,TM

@ASG,TM

@XQT

$INPUT

SEND

$INPUT

SEND

@XQT

@FIN

ABBPLT, ABB, ATS, 30, 200

JOB DECK FOR THE ATS DATA PROCESSOR

PROCESSOR

TASF_NNOT.,F

I,TASKANNOT

TASKDESCR.,F

3,TASKDESCR

8,T,xxxx

PLOTFILE., T,PLOT

ATS*PROCESSOR.PLTMAP

(Assign input History Tape and relate

it to the logical unit 8)*

(Assign output plot tape)

[NAMELIST Variables]

[NAMELIST Variables]

ATS*PROCESSOR.PHASE2

*Note: xxxx denotes the reel number of the particular

magnetic tape.

BELLCOMM, INC. 9-16

PHASE2 which must be executed in the sequence shown to

produce the output plot tape that is input to the SC-4020

plotter. The drum files TASKANNOT and TASKDESCR again contain

the task annotation and descriptor lists which are obtained

from the input History Tape.

As noted in Section 8.2, any number of plots may

be generated in a single run but each set of plot description

data must be input separately. Each plot is described in

a separate set of NAMELIST input data and so more than one

set may be included in a job deck.

9.3.1 Processor Data Deck

The NAMELIST statement for the Data Processor

contains the 15 variables defined in Table 9.9. A subset

of these variables must be specified in each set of NAMELIST

input data but the variables included in that set depend upon

the type of graph requested. Table 9.10 lists the specifi-

cation options available to the user. Note that the variables

marked with an asterisk will retain their values for the

duration of the run. Once specified, therefore, these

variables need only be redefined when the values must be

changed.

9.3.1.1 Priority Level Option

The input value of IPRIOR serves the same function
in the Data Processor as it does in the Schedule Generator:

to provide scheduling data representing a particular point

in the scheduling process. A value of IPRIOR>0 must be

specified.

9.3.1.2 Plot Interval

TBEGIN and TEND, the lower and upper endpoints of

the plot interval must be specified for every plot.

9.3.1.3 Graph Label

Array TITLE contains the 48 characters that will

be written at the top of each frame of the graph. Any title

containing a maximum of 48 characters (including blanks) may

be specified. The title will be printed exactly as it

appears between the quote marks on the input card.

9.3.1.4 Specifications for Coaxial (Horizontal) Plots

Only two variables must be specified to describe

a horizontal plot. HDEP contains the names of the variables

O_

O_

o

A_
t_

o

or/
H

o

[/9
o
o
o

t_
4.1
t_

o

n_
o

o

H

o

A_

-_l

O

_o
.-I

q_
o

4J

h
0

0
-,-I

C
0

.,-I

0 t_

,-I
t_
-,-I
N •

.COrn
O O

q_t_O
O

m 0

" -,4 _.1
_ON O

Or'l"-" O
•C O -_

-,A..Q0-, ,-_

•,4 0_.. >

o_-_o

N_o -a

,-C

•,4 _
1,4 • •
• D_ Im

,-I • •
,--I 4.1 .,o
O _

_ H

A

u'_
v

c_

9-17

A A

v v

oH

H

• I

q_ • o
o _ _o

O_ • O

0_ 0 -a
_ _ _ •

0 >m

1.4o t_ _ ._

• • • • •
ON

o _ •

_o _ o0 o0
o o o

,-4 _ oo 0o
O,-4

O OO -_O
m O_ AIO _

-a
o

o_

.u 4-) O

A A

,-.q ,..-4
v v v

o o 0

-4 -_ -,-t _1
-P O •

0 0 o
_ _ 0 o o

H
0 cl ,-1

Bt

9-18

cD

o_

0)
r-4
_O
r_
E_

e_
O
In
5q

[_)

£n
2:
O
H

0

2:
0
H

U
I.-I

_4

H

2:

O
,--t

_ Jm

O
H

,-I

>

(D

I...4

O
,-4

in

o

o

._._
0

In

.,-I
0 0

o

II c,l

2: II
I-4

E_

I-4

<

E_
I-I

E_
I-.4
E_

<

(D
,-I

.,-I
..l.J

Q)

O

i-i

<

<

I-4
E_

II

2

.to

4J

0
,._

0

0

m>

0

E_ 0

4_

m

U

U

O

.

O 0

_m
r_

0
In4_

r_ r_

O -,--I
u,-I "N

N_
_MO

O

r..)

11

0

¢) (D

..l-I
0 In

¢)
.clo

o,-I
4J

q.4
mO

.,-i
©

m

,-4
,-i _I
_I ..la

.,-4
N O
ml N
O.,-I

II

.,-I
u_
Q)

-_I
.U

-_I

.U

In
-_I

Q)

r_
m

9-19

0
C)
-._p

o
,-4

o_

E_

0]
Q)
,-4

nJ
>

,-q

O
-,-I
"0
0
-,-I

(D 0
h-,-I

0
X-,-I
_h
U_ (D

.J
C)

,.0-,-I

-,-I

:>-,--I
0

qq
0"0

C)
{n4-*

UO

h
h

0 0

u'l

II

Z

0

>

Ill

r6

L)

(1)
,--t
,.0

.,-t

>

(D

4.}

q4
0

_n

o

o
o

o

t)

II

c_

u/
>

o

_D

0
,.0

"cl

KI

0

..,--I

,-0-_

0
.,-t
"0
0

.,-I

(1)

O"(J

•-.-- o
(1) •
c

.,-4

r_ C)

4-} I._

-,-I 0
4-}

•,-I -,-I
4-}

0

0 C_

o

II

0
,-t

O
0-,-I
_"0

0
C).,-I

P.,

(D

•,-I0
,-I
"-'C)

•,--t _
0

O_

II

0

©

r_

4-}
0

,-I

L)
-,-I
R_
0

.,-I

(_
O4

C)

4-}

m

@ @

_ m
.,--I
I4 I1)

,--t

II

H

L9
>

© ©

t_
0 Q_

•,-I 0
,--4
O4

"0 m

"0
(1)

(D
U
(_ 4-}

,--I

0 -,-t
U

_4J m-,-.t

II

,d

.,-I
u_
Q)

,-4

4_

@

4_
@

{n
-,-I

>

BELLCOMM INC 9-20

to be plotted while the value of variable RPF specifies

the length of the time interval to be displayed on one
frame.

9.3.1.5 Specifications for Periodic Plots

As noted in Section 8.2, the user must specify
in the input data how the occurrences of each variable are

to be displayed. Array VPOINT therefore contains the

names of the variables whose occurrences are to be displayed
as points while Array VSHADE contains the names of those

variables whose occurrences are to be displayed as shaded

boxes. P2L and LPF must also be specified. Finally, the

flag VGRID is set equal to one if the grid lines on the

plot are to be suppressed.

9.3.1.6 Program Control Options

The variable KDUMP controls the printout of

collected data. When KDUMP is set equal to one in the

data deck all of the data points for each variable will

be printed out during the execution of Phase 2. This

option is used primarily as a diagnostic tool. Finally,

the variable LAST must be set equal to one in the last set

of plot data in order to terminate the execution of Phase i.

9.3.2 Sample Job Deck

Table 9.11 shows the job deck required to

generate the three graphs illustrated in Figures 3.2 and

3.3. Three sets of NAMELIST input data are required.

The first set requests that the entries in the resource

commitment tables for each of the three crewmen be displayed

on a coaxial plot. All entries between two and three days

are to be displayed to a scale of one day per frame. The

setting of the variable IPRIOR requires that the data at the

44th priority level be displayed.

The second data set also requests coaxial plots.

The third set, however, requests periodic plots. In the

latter set, the occurrences of the Task LUNCHA are to be

plotted as points while the occurrences of the variable DAY

and the Task REST are to be displayed as shaded boxes. All

occurrences between one and seven days are to be displayed to

scales of one day per line and six lines per frame. Since

IPRIOR is not specified in the second or third data sets,

the corresponding graphs will also use the data from the

44th priority level.

BELLCOMM, INC. 9-21

Table 9. ii

Sample Job Deck for the ATS Data Processor

@ RUN

@HDG

@ASG, A

@ASG, T

@USE,

@ASG,A

@USE

@AS G, TM

@ASG, TM

@XQT

$INPUT

ABBPLT, ABB, ATS, 30, 200

JOB DECK TO GENERATE HORIZONTAL & VERTICAL PLOTS

PROCESSOR

TASKANNOT.,F

I,TASKANNOT

3,TASKDESCR

8,T•1200

PLOTFILE.IT,PLOT

ATS*PROCESSOR'PLTMAP

IPRIOR=44,

TBEGIN=2.0,

TEND=3.0,

TITLE='COAXIAL PLOTS OF CREW TIMELINES',

HDEP='CREWA', 'CREWB', 'CREWC',

RPF=I.0,

SEND

$INPUT

TBEGIN=2.0

TEND=3.0,

TITLE='COAXIAL PLOTS OF CREWA, LUNCHA, POWER, AND S/C DAY',

HDEP='CREWA', 'LUNCHA', 'POWER'• 'DAY',

RPF=I.0

SEND

BELLCOMM, INC 9-22

Table 9.11 (cont'd)

$INPUT

TBEGIN=I.0,

TEND=7.0,

TITLE='PERIODIC PLOTS OF S/C DAY, REST, AND L_CHA',

VPOINT='LUNCHA',

VSHADE='DAY', 'REST',

RPL=I.0,

LPF=6,

LAST=l,

SEND

@XQT ATS*PROCESSOR, pHASE2

@FIN

BELLCOMM, INC.

i0.0 Recommendations for Future Work

The implementation of the ATS represents the

first phase in an investigation into the nature of the

scheduling process. Future work on the ATS should be

concerned with expanding its capabilities to meet the

operational needs arising from two areas of investigation.

The first is concerned with defining one or more parameters

to measure the effectiveness of a particular schedule,

i.e., parameters that will aid the user in evaluating
the relative merits of different schedules. Since the

nature of these parameters cannot be completely antici-

pated, the feasibility of expanding the Data Processor

to perform any set of user-formulated calculations will

be investigated.

The second area of investigation should be

directed toward determining a meaningful dynamic priority

system which could be overlaid on the static priority

system now in the ATS. The dynamic system would reflect

the effect of current scheduling decisions on future

opportunities and would indicate the order in which a

subgroup of tasks having the same static priority rating

should be scheduled. Allied with this problem is the

selection of the proper start-time from within the defined

start-time windows. In the present version, the earliest

possible start-time is chosen arbitrarily but a selection

made on a more analytical basis is obviously more desir-

able. The first step in this investigation will be to

modify the Schedule Generator to keep track of the reason

for tasks not being scheduled. This modification will

enable the user to quickly determine which of the task

requirements or constraints is preventing the scheduling

of the task. This knowledge should lead to a broader

understanding of the cause and effect relationship between

current decisions and future alternatives.

BELLCOMM, INC.

ii•0 Summary

The Automated Task Scheduler, a group of computer

programs designed to produce and display mission timelines

(or schedules) for manned space missions, has been implemented.

The system consists of three computer programs:

i • A Schedule Generator that generates a

time history of the commitments for each

designated resource and a corresponding
list of start-times for each task.

• A Data Processor that displays timeline

data in graphical form.

. A Data Bank Generator that creates and

edits a permanent task Data Bank.

The primary output of the Schedule Generator is a set of

resource commitment tables and a list of start-times for

each task. On option, however, intermediate results can

be recorded on a History Tape which can be used on a

subsequent run to initiate the scheduling process at some

intermediate point• Hence, the Schedule Generator can

be used to complete a partial schedule as well as generate

a completely new schedule.

The History Tape is also used as an input to

the Data Processor which is used for graphically displaying

the timeline data produced by the Schedule Generator.

Two types of plots can be generated: coaxial and periodic.

Coaxial plots can display up to five binary and/or analog

variables on a single set of axes. The periodic plots are

used to overlay the occurrences of different binary vari-

ables and hence illustrate recurring patterns and the

interrelationship between different variables.

One of the most important tasks in implementing

the ATS was the development of a flexible input language

capable of translating a wide variety of resource require-
ments and performance constraints into statements that

could be recognized by the Schedule Generator. The resulting

Task Description Language (TDL) consists of 12 card formats.

Seven of these formats (the Priority, Objective, Time,

Amount, Enable, Inhibit, and Resource Cards) are used to

translate resource requirements, performance restrictions,

and performance objectives into statements that can be

BELLCOMM, INC. 11-2

processed by the Schedule Generator. Two additional

formats (the Title and Comment Cards) are provided to

annotate the Descriptor Cards with alphanumeric comments.

The final three formats (the Equivalence, Delete, and

Last Cards) are used as control statements.

If the user establishes a data base consisting

of a large number of task descriptions, he may, for

convenience, store these descriptions on a Data Bank file

using the Data Bank Generator Program. The descriptions

on this bank can then be selectively copied by the Schedule

Generator for each run, thus relieving the user of having
to _npu_ a large _^_...... _._ of cards. The task descriptions

for the Schedule Generator run are stored on temporary drum

files for the duration of that run and hence may be edited

for that run without affecting the descriptions stored on
the Permanent Data Bank.

When generating a schedule, the Schedule Generator

considers each task once, the order of consideration being

specified by the user. For each task, the program first

determines acceptable start-time windows (i.e, continuous

intervals during which the task may be initiated) and then

selects start-times for as many repetitions of the task as

are required by selecting points from within the windows.

The process continues until all tasks have been considered.

When a performance of a task is scheduled, the commitment

tables for each resource required by the task are updated

to reflect the commitment of that resource to that task.

Two methods of dynamic storage allocation were

used in implementing the ATS algorithm in order to reduce

the amount of required core space. The ephemeris and

resource tables are all stored in one large working array

that is partitioned off at the start of the program

according to user estimates of table size. In contrast,

the task descriptions, start-time windows, and lists of

task start-times are stored in a list structure using SAC-I,

a FORTRAN-imbedded list-processing language.

Acknowl e dgmen t

The author wishes to express his appreciation to

Miss M. P. Odle and to Mr. R. F. Jessup for their advice

on the use of the SAC-I and AUPLOT Systems respectively,

and to Miss D. P. Nash who helped with the programming of

the ATS. _) _'__/ i,

1025-ABB-Ii A.B. Baker

Attachments

BELLCOMM, INC.

References

l•

•

•

•

•

•

.

•

•

I0.

A. B. Baker

"A Survey of Automated Scheduling Models"

Bellcomm Memorandum for File B69 04020, April 7, 1969.

D. P. Nash

"ATSEPHEM - A Program to Generate an Ephemeris Data

Tape for the Automated Task Scheduler"

Bellcomm Memorandum for File In Preparation

M. S. Feldman

"'Pick a Day" Experiment M093 Requirements - Case 610"

Bellcomm Memorandum for File B70 04026, April 7, 1970.

Ivan Flores, Computer Programming, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. (1966)

Chapter 9, pp. 257-262•

Knuth, Donald E., The Art of Computer Programmin@,

Vol. I, Addison-Wesley, Reading, Mass. (1968)

Chapter 2, pp. 228-435•

Sherman, P. M., Techniques in Computer Programmin@,
Prentice-Hall, Inc., Englewood Cliffs, N. J. (1970)

Chapter 12, pp. 226-233•

G. E. Collins

"The SAC-1 List Processing System"

Computer Sciences Department

University of Wisconsin, July ii, 1967.

M. P. Odle

"SAC-I System for List Processing and Formula Manipulation"

Bellcomm Memorandum for File B70 04001, April i, 1970.

D. P. Nash

"Processing Task Description Cards in the Automated Task
Scheduler"

Bellcomm Memorandum for File B70 12062, December 23, 1970.

"Programmers' Reference Manual

SC-4020 High-Speed Microfilm Recorder"

Stromberg-Carlson Document #9500056, October 1964.

BELLCOMM. INC.

References (cont'd)

ii.

12.

13.

14.

R. F. Jessup

"AUPLOT System Description"

Bellcomm Memorandum for File B69 10116 October 27, 1969

R. F. Jessup

"AUPLOT II - A System of Data Handling and Plot

Subroutines for Computer Graphics"

TM-70-2011-2 November 20, 1970

"EXEC 8 - User's Manual"

Bellcomm, Inc. August 1968
Section V

"UNIVAC 1108 Multi-Processor System Programmer's
Reference Manual"

Sperry-Rand Corporation, 1969

pp. 6-13 through 6-17.

BELLCOMM, INC.

APPENDIX

ATS Error Diagnostics

A.0 Introduction

The wide variations in input data permitted by

each of the ATS programs make it almost inevitable that

the user will, at some time, violate one or more of the

usage rules described in this manual. These violations

will usually result in either the generation of erroneous

information or the termination of the run by the computer

executive. In order to prevent these alternatives and to

aid the user in pinpointing these violations, a system of

error terminations has been incorporated into each of the

ATS programs. A diagnostic message is printed out with

every termination. Each message includes the name of the

subroutine in which the message is generated and the reason
for the termination.

The messages generated by each of the ATS programs

are presented in Sections A.I through A.3. Within each

section the messages are grouped according to the subroutines

in which they are generated. Each message is printed in

capital letters and is accompanied by an explanation. In

all cases, the lower case letter k and names appearing

inside quotation marks are inserted for purposes of illustra-

tion. They will be replaced with real data in the computer

printout.

BELLCOMM, INC. A-2

A.I Data Bank Generator Diagnostic Messages

A.I.I THE FIRST DESCRIPTOR CARD FOR

TASK 'TASKX' IS NOT A PRIORITY

CARD

The first Descriptor Card encountered for any

task must be a Priority Card. The user should rearrange

the input sequence of Task Description Cards so that the

sequence rules described in Section 4.3.1 are satisfied.

A.I.2 THE PERFORMANCE OBJECTIVES FOR

TASK 'TASKX' HAVE NOT BEEN DEFINED

This message is generated when the second

Descriptor Card encountered for Task TASKX is not an

Objective Card. The user should rearrange the input

sequence of Task Description Cards so that the sequence
rules described in Section 4.3.1 are satisfied.

A.I.3 THE CARD TYPE 'TYPEX' SPECIFIED

IN FIELD 2 OF A DESCRIPTOR CARD

FOR TASK 'TASKX' IS NOT A VALID

CARD TYPE

The alphanumeric combination 'TYPEX', specified

in Field 2 of a Task Description Card, does not match any

of the ii card types described in Section 4.2. The user

should insure that the designation in Field 2 matches one

of the type designators shown in Table 4.2 and that all

of the field delimiters have been included.

A.I.4 TASK 'TASKY' NAMED ON FIELD 3

OF THE EQUIVALENCE CARD FOR TASK

'TASKX' HAS NOT BEEN DEFINED

This message will be generated by either of two

possible errors. Either the name of the task appearing in

Field 3 does not appear exactly as it appeared on its own

BELLCOMM, INC. A-3

set of Task Description Cards or the input sequence of

Task Description Cards is incorrect. In the latter case,

the sequence must be rearranged so that the task named in

Field 3 is defined before the Equivalence Card is encoun-

tered (Section 4.3.2).

A.1.5 THE FIRST DESCRIPTION CARD FOR

TASK 'TASKX' IS NOT A TITLE CARD

The first Description Card for any task must be

a Title Card. The user should rearrange the input of Task

Description Cards so that the sequence rules described in
Section 4.3.1 are satisfied.

A.I.6 THE NUMBER OF TASKS TO BE

STORED IN THE DATA BANK, k,

IS GREATER THAN THE NUMBER

OF ENTRIES PERMITTED IN THE

TOC ARRAY

The number of tasks that can be stored in the

Data Bank is limited by the dimension of the TOC Array

(Section 6.0). This message indicates that the maximum

has been exceeded.

A.I.7 OUT OF AVAILABLE SPACE

This message is generated by Subroutine NOAVLS,

an element in the SAC-I System. The message indicates that

there are no cells on the Available Space List (Section 5.0).

Since cells are continually being returned to the list, the

complete deletion of the list could arise from a unique

combination of schedule characteristics and data generation.

A slight variation in these characteristics (e.g. varying

the order in which the tasks are considered) usually elimi-

nates the problem. If the problem persists, the Available

Space List should be increased by increasing the dimension

of Array ASL.

BELLCOMM, INC. A-4

A.2 Schedule Generator Diagnostic Messages

A.2.1 Messages Generated in Subroutine CREW

A.2.1.1 TASK 'TASKX' HAS A MULTIPLE

REQUIREMENT ON CREWMAN 'CREWX'

BY SPECIFIC NAME AND BY SKILL

'SKILLX'

The task description for TASKX contains a

R_sourc_ Car_ _hat _p_=_ _ _r^Tv in Fie_1_ 3 _

another Resource Card that specifies skill SKILLX in Field 3.

Since Crewman CREWX has been assigned SKILLX, the effect is

to have more than one requirement on the same resource in

the same task description which is not permitted (Section 4.4).

A.2.1.2 THE NUMBER OF UNDESIGNATED

CREWMEN FOR 'TASKX' EXCEEDS

THE NUMBER OF UNASSIGNED

CREWMEN AVAILABLE

The number of Resource Cards for Task TASKX with

the ANY designation in Field 3 exceeds the number of unassigned

crewmen (i.e., the total number of crewmen less the number

designated by specific name and skill) available.

A.2.2 Message Generated in Subroutine ENTRY

A.2.2.1 SCHEDULING OF TASK 'TASKX' WILL

EXCEED THE ALLOTTED SPACE IN

THE 'RESNME' COMMITMENT TABLE

If the RESNME commitment table is updated to

reflect the allocation of that resource to Task TASKX, the

maximum number of entries permitted for that table will be

exceeded (Section 5.1.2).

BELLCOMM, INC.
A-5

A.2.3 Messages Generated in Routine MAIN

A.2.3.1 THE RESOURCE 'RESNME' NAME ON

FIELD 3 OF AN AMOUNT CARD FOR

TASK 'TASKX' DOES NOT APPEAR

IN ARRAY DTABLE

The alphanumeric combination RESNME does not

match any of the names specified as consumables in Array
DTABLE. The user should check to insure that the name

specified on the Amount Card is identical to the name

specified in the NAMELIST input via Array NEWDAT (Sec-

tions 4.2.1.7 and 9.2.1).

A.2.3.2 THE NUMBER OF TASKS, k, TO BE

SCHEDULED IN THIS RUN IS GREATER

THAN THE NUMBER OF ENTRIES

PERMITTED IN THE LNAMES AND

ORDER ARRAYS

The maximum number of tasks that can be scheduled

in any one run of the Schedule Generator is limited by the

dimension of the LNAMES and ORDER Arrays. This message
indicates that the maximum has been exceeded. The current

version of the ATS permits a maximum of 200 tasks to be

considered for scheduling in any one run. This maximum can

only be increased by increasing the dimension of the LNAMES

and ORDER Arrays (Section 7.0).

A.2.3.3 THE INDEPENDENT TASK 'TASKX',

NAMED ON A 'TYPE' CARD FOR

DEPENDENT TASK 'TASKY', DOES

NOT APPEAR IN THE ORDER ARRAY

This message indicates that the dependent task,

TASKY, has become a candidate for scheduling before the

independent task named on an Enable or Inhibit Card which

is not permitted (Sections 4.2.1.5 and 4.2.1.6).

BELLCOMM, INC. A-6

A.2.3.4 OUT OF AVAILABLE SPACE

See Section A.I.7.

A.2.4 Message Generated in Subroutine MULTI

A.2.4.1 THE NUMBER OF WINDOWS IN THE

k SECTION OF START-TIME

WINDOWS FOR TASK 'TASKX' IS

GREATER THAN THE MAXIMUM SPACE

ALLOTTED IN ARRAY WIN

The amount of data to be entered into the internal

working Array WIN exceeds the maximum dimensions of that

array. The amount of data (in this case, lists of start-time

windows) generated depends upon a unique combination of time-

line characteristics that exist at the point in the scheduling

process where TASKX is being considered. A slight variation

in these commitments (e.g., in the order in which the tasks

are considered for scheduling) will usually eliminate this

problem. If the problem reoccurs the dimension of Array WIN

should be increased.

A.2.5 Messages Generated by Subroutine RESRCE

A.2.5.1 THE NAME 'RESNME' SPECIFIED IN

FIELD 3 OF A RESOURCE CARD FOR

TASK 'TASKX' DOES NOT MATCH ANY

NAME IN ARRAY LTABLE

The alphanumeric combination 'RESNME' does not

match any of the names of the commitment tables stored in

Array LTABLE (Section 5.1). The user should insure that

the name specified on the Resource Card is identical to

one of the names specified in the input data via Arrays

NEWCOM and NEWCRW in the NAMELIST input or via the ATS

Ephemeris Tape. This message will also be generated if the

resource name defined in the input data ends on a numeral

rather than a letter as required (Sections 4.2.1.7 and 9.2.1).

BELLCOMM, INC. A-7

A.2.5.2 THE NAME 'RESNME' SPECIFIED IN

FIELD 3 OF A RESOURCE CARD FOR

TASK 'TASKX' DOES NOT MATCH

ANY NAME IN ARRAY DTABLE

The alphanumeric combination 'RESNME' does not

match any of the names specified as consumables in Array
DTABLE. The user should check to insure that the name

specified on the Resource Card is identical to the name

specified in the NAMELIST input via Array NEWDAT (Section

9.2.1) .

A.2.6 Messages Generated in Subroutine SCHED

A.2.6.1 THE NUMBER OF SECTIONS OF START-

TIME WINDOWS FOR TASK 'TASKX' IS

GREATER THAN THE NUMBER OF ENTRIES

PERMITTED IN THE SEC ARRAY

The amount of data to be entered into the internal

working Array SEC exceeds the maximum dimensions of that

array. The amount of data (in this case, lists of start-time

windows) generated depends upon a unique combination of time-

line characteristics that exist at the point in the scheduling

process where TASKX is being considered. A slight variation

in these commitments (e.g., on the order in which the tasks

are considered for scheduling) will usually eliminate this

problem. If the problem reoccurs, the dimension of Array
SEC should be increased.

A.2.6.2 THE DESIRED NUMBER OF PERFORMANCES,

k, SPECIFIED FOR TASK 'TASKX'

EXCEEDS THE NUMBER OF ENTRIES

PERMITTED IN ARRAY LVWIN

The desired number of performances specified in

Field 4 of the Objective Card for Task TASKX exceeds the

row dimension of Array LVWIN (Section 4.2.1.2).

BELLCOMM, INC. A-8

A.2.7

A.2.7.1

Messages Generated by Subroutine SETUP

THE FIRST DESCRIPTOR CARD FOR

TASK 'TASKX' IS NOT A PRIORITY

CARD

See Section A.I.I.

A.2.7.2 THE PERFORMANCE OBJECTIVES FOR

TASK 'TASKX' HAVE NOT BEEN

DEFINED

See Section A.I.2.

A.2.7.3 THE CARD TYPE 'TYPEX' SPECIFIED

ON FIELD 2 OF A DESCRIPTOR CARD

FOR TASK 'TASKX' IS NOT A VALID

CARD TYPE

See Section A.I.3.

A.2.7.4 NO DATA BANK OPTION HAS BEEN

SPECIFIED IN THE NAMELIST INPUT

As shown in Table 9.4, one of the four data

bank options must be specified in the input NAMELIST.

A.2.7.5 TASK 'TASKY' NAMED IN FIELD 3

OF THE EQUIVALENCE CARD FOR

TASK 'TASKX' HAS NOT BEEN

DEFINED

See Section A.I.4.

BELLCOMM, INC. A-9

A.2.7.6 THE FIRST DESCRIPTION CARD FOR

TASK 'TASKX' IS NOT A TITLE CARD

See Section A.I.5.

A.2.7.7 OUT OF AVAILABLE SPACE

See Section A.1.7.

Messages Generated by Subroutine TABIN

THE INPUT PARAMETERS DO NOT

MATCH THE LAUNCH PARAMETERS

ON THE ATS EPHEMERIS TAPE

INPUT LAUNCH PARAMETERS

DATE 'JAN. i, 1972'

TIME '15.00' HRS

ATS EPHEMERIS LAUNCH PARAMETERS

DATE 'NOV. 9, 1972'

TIME '15.00' HRS

The launch date and time specified through

variables GDATE and TIMEL in the NAMELIST input do not

match their counterparts on the ATS Ephemeris Tape.

A.2.8.2 THE TOTAL REQUIRED SPACE IN

THE WA ARRAY IS GREATER THAN

THE DIMENSION OF THE ARRAY

The sum total of locations allocated to all of

the tables stored in the WA Array has exceeded the dimension

of the array (Section 9.2.1.4). The total number of required

locations should be reduced either by reducing the number of

locations allocated to some of the tables defined in Array

NEWCOM or by removing some of the tables from the ATS Ephemeris

Tape (Section 3.2.1).

BELLCOMM. INC. A-10

A.2.8.3 ARRAY LTABLE HAS NO SPACE TO

ACCOMMODATE ENTRY 'RESNME'

The names of all Resource Tables stored in the

WA Array must be entered in Array LTABLE, (Section 5.1.2).

The names are entered into the array in the following

sequence:

i. Crewmen CREWA, CREWB, CREWC.

. The names of all new tables defined in Array

NEWCOM (Section 9.2.1.4).

3. The names of all crewmen defined through

Array NEWCRW.

. The names of all Ephemeris Resource Tables

stored on the ATS Ephemeris Tape.

The message indicates that the total number of

tables defined prior to Table RESNME equals the maximum

number of entries permitted in Array LTABLE. To eliminate

the problem therefore, the total number of tables being
defined must be reduced or the dimension of Array LTABLE

must be increased.

A.2.8.4 ARRAY CRWSKL HAS NO SPACE TO

ACCOMMODATE 'CREWX'

The names of all crewmen must be entered in

Array CRWSKL (Section 7.2). New crewmen (other than CREWA,

CREWB, and CREWC) are entered in the CRWSKL Array in the

order in which they are specified in input Array NEWCRW.

The message indicates that the total number of crewmen

defined prior to Crewman CREWX equals the maximum number

of entries in the CRWSKL Array. Therefore, the total

number of crewmen being defined must be reduced.

A.2.9 Message Generated by Subroutine WINDOW

A.2.9.1 THE TOTAL NUMBER OF RESOURCE

REQUIREMENTS AND PERFORMANCE

CONSTRAINTS SPECIFIED FOR TASK

'TASKX' IS GREATER THAN THE

MAXIMUM NUMBER OF ENTRIES

PERMITTED IN THE REQ ARRAY

Each location of Array REQ, an internal working

array, is to contain the address of one of the requirement

BELLCOMM, INC. A-II

or constraint sublists in the Task Description List

(Figure 5.6). The message indicates that the number

of these sublists is greater than the maximum number

permitted by the dimension of the array.

The REQ Array is currently dimensioned to 33,

the maximum number of requirements that can be specified

in a task description (since, as noted in Section 5.3.2.3,

the maximum number of Descriptor Cards that can be

specified in a task description is 35). Therefore, the

only conditions under which this message would be generated

would be if the permissible number of Task Description

Cards was increased without increasing the dimension of

the REQ Array.

BELLCOMM, INC. A-12

A.3 Data Processor Diagnostic Messages

A.3.1 Message Generated in Routine ATSPLT

NO DEPENDENT VARIABLES HAVE

BEEN SPECIFIED

The names of the variables to be plotted have

not been specified in the input data (Sections 9.3.1.4

and 9.3.1.5).

A.3.2 Message Generated in Subroutine HPLOT

A. 3.2. i THE DEPENDENT VARIABLE 'NAME '

DOES NOT MATCH ANY OF THE RESOURCE

NAMES LISTED IN ARRAY LTABLE OR

ANY OF THE TASK NAMES LISTED IN

ARRAY ORDER

The alphanumeric combination 'NAME', specified

in Array HDEP, cannot be identified. The user should

check to insure that the name that appears in Array HDEP

identically matches the name of a resource table stored

in Array LTABLE or the tame of a task stored in Array

ORDER (Section 8.3.1) .

A.3.2.2 NO PERFORMANCES OF TASK 'TASKX'

HAVE BEEN SCHEDULED

No performances of Task TASKX were scheduled;

hence, no graph of the occurrences of Task TASKX can be

generated.

A.3.3 Message Generated in Subroutine VPLOT

A.3.3.1 THE-DEPENDENT VARIABLE 'NAME' DOES

NOT MATCE ANY OF THE RESOURCE NAMES

LISTED IN ARRAY LTABLE OR ANY OF

THE TASK NAMES LISTED IN ARRAY ORDER

The alphanumeric combination 'NAME' specified in

Array VPOINT or VSHADE cannot be identified. The users

........ _ insure that ==-name that appears in the

BELLCOMM, INC. A-13

array input identically matches the name of a resource

table stored in Array LTABLE or the name of a task stored

in Array ORDER (Section 8.3.1) .

A.3.3.2 NO PERFORMANCES OF TASK 'TASKX'

HAVE BEEN SCHEDULED

No performances of Task TASKX were scheduled,

hence, no graph of the occurrences of Task TASKX can be

generated.

A.3.3.3 DEPENDENT VARIABLE 'RESNME' IS

LISTED IN LTABLE AS AN ANALOG

RESOURCE. ANALOG RESOURCES

CANNOT BE DISPLAYED ON PERIODIC

PLOTS

The dependent variable RESNME was identified

as the name of an analog resource table. Analog resources

cannot be displayed on periodic plots (Section 8.4).

r_

BELLCOMM, INC. "rM- 71-1025--1

DISTRIBUTION

7

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES:

OFFICIAL FILE COPY

plus one white copy for each

additional case referenced

TECHNICAL LIBRARY (4)

NASA Headquarters

H. Cohen/MLQ

J. H. Disher/MLD

W. B. Evans/MLO (2)

J. P. Field, Jr./MLB

T. E. Hanes/MLA

V. N. Huff/MTE (2)

T. A. Keegan/MTE

A. S. Lyman/MR (2)

M. Savage/MLE

W. C. Schneider/ML

D. N. Turner/MF

MSC

B. L. Brady/FS5

R. H. Brown/FM3

J. B. Cotter/CF34

B. E. Ferguson/CF34

J. A. Frere/FS4

J. B. MacLeod/FS

R. E. McAdams/FM3

MSFC

G. B. Hardy/PM-AA-EI

T. E. Telfer/S&E-AERO-MM

Aerospace Corporation

L. T. Stricker

R. R. Wolfe

University of Wisconsin

G. E. Collins

COMPLETE MEMORANDUM TO (Cont'd)

Bellcomm, Inc.

A. P. Boysen, Jr.
J. P. Downs

D. R. Hagner

W. G. Heffron

H. A. Helm

E. E. Hillyard
N. W. Hinners

R. F. Jessup

D. P. Ling

P. F. Long

K. E. Martersteck

J. Z. Menard

J. M. Nervik

M. P. Odle

S. L. Penn

P. F. Sennewald

R. V. Sperry

W. B. Thompson

J. W. Timko

R. L. Wagner
M. P. Wilson

Division i01 Supervision

Departments 1022, 1024, 1025

Department 1024 Files

